Citation: | HU Fenghui, FANG Xiangwei, SHEN Chunni, YAO Zhihua, CHEN Zhenghan. Evolution characteristics of mesoscopic pore structure for coral sand samples based on CT-triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 936-947. DOI: 10.11779/CJGE20231224 |
[1] |
吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191.
WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191. (in Chinese)
|
[2] |
蔡正银, 陈元义, 朱洵, 等. 级配对珊瑚砂颗粒破碎与变形特性的影响[J]. 岩土工程学报, 2023, 45(4): 661-670. doi: 10.11779/CJGE20220884
CAI Zhengyin, CHEN Yuanyi, ZHU Xun, et al. Influences of gradation on particle breakage and deformation characteristics of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 661-670. (in Chinese) doi: 10.11779/CJGE20220884
|
[3] |
FANG X W, YANG Y, CHEN Z, et al. Influence of fiber content and length on engineering properties of MICP-treated coral sand[J]. Geomicrobiology Journal, 2020, 37(6): 582-594. doi: 10.1080/01490451.2020.1743392
|
[4] |
HU F H, FANG X W, YAO Z H, et al. Experiment and discrete element modeling of particle breakage in coral sand under triaxial compression conditions[J]. Marine Georesources & Geotechnology, 2023, 41(2): 142-151.
|
[5] |
陈海洋. 钙质砂的内孔隙研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2005.
CHEN Haiyang. Study on Internal Porosity of Calcareous Sand[D]. Wuhan: Graduate University of Chinese Academy of Sciences (Wuhan Institute of Rock and Soil Mechanics), 2005. (in Chinese)
|
[6] |
蒋明镜, 吴迪, 曹培, 等. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 2017, 39(增刊1): 1-5. doi: 10.11779/CJGE2017S1001
JIANG Mingjing, WU Di, CAO Pei, et al. Connected pore analysis of calcareous sand based on SEM images[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 1-5. (in Chinese) doi: 10.11779/CJGE2017S1001
|
[7] |
周博, 库泉, 吕珂臻, 等. 钙质砂颗粒内孔隙三维表征[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊1): 41-48.
ZHOU Bo, KU Quan, LÜ Kezhen, et al. Three-dimensional characterization of pores in calcareous sand particles[J]. Journal of Tianjin University (Natural Science And Engineering Technology Edition), 2019, 52(S1): 41-48. (in Chinese)
|
[8] |
程壮, 王剑锋. 用于颗粒土微观力学行为试验的微型三轴试验仪[J]. 岩土力学, 2018, 39(3): 1123-1129.
CHENG Zhuang, WANG Jianfeng. A mini-triaxial apparatus for testing of micro-scale mechanical behavior of granular soils[J]. Rock and Soil Mechanics, 2018, 39(3): 1123-1129. (in Chinese)
|
[9] |
蒋明镜, 李光帅, 曹培, 等. 用于土体宏微观力学特性测试的微型三轴仪研制[J]. 岩土工程学报, 2020, 42(增刊1): 6-10. doi: 10.11779/CJGE2020S1002
JIANG Mingjing, LI Guangshuai, CAO Pei, et al. Development of micro triaxial instrument for macro and micro mechanical properties testing of soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 6-10. (in Chinese) doi: 10.11779/CJGE2020S1002
|
[10] |
DESRUES J, CHAMBON R, MOKNI M, et al. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[J]. Géotechnique, 1996, 46(3): 529-546. doi: 10.1680/geot.1996.46.3.529
|
[11] |
李晓军, 张登良. 路基填土单轴受压细观结构CT监测分析[J]. 岩土工程学报, 2000, 22(2): 205-209. doi: 10.3321/j.issn:1000-4548.2000.02.012
LI Xiaojun, ZHANG Dengliang. Monitoring change of structure of road foundation soil in uniaxial compression test with CT[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 205-209. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.02.012
|
[12] |
陈正汉, 卢再华, 蒲毅彬. 非饱和土三轴仪的CT机配套及其应用[J]. 岩土工程学报, 2001, 23(4): 387-392. doi: 10.3321/j.issn:1000-4548.2001.04.001
CHEN Zhenghan, LU Zaihua, PU Yibin. The matching of computerized tomograph with triaxial test apparatus for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 387-392. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.001
|
[13] |
ODA M, KAZAMA H. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[J]. Géotechnique, 1998, 48(4): 465-481. doi: 10.1680/geot.1998.48.4.465
|
[14] |
MATSUSHIMA T, KATAGIRI J, UESUGI K, et al. Micro X-ray CT at spring-8 for granular mechanics[M]// Solid Mechanics and its Applications. Dordrecht: Springer Netherlands, 2003: 225-234.
|
[15] |
HALL S A, BORNERT M, DESRUES J, et al. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation[J]. Géotechnique, 2010, 60(5): 315-322. doi: 10.1680/geot.2010.60.5.315
|
[16] |
KARATZA Z, ANDÒ E, PAPANICOLOPULOS S A, et al. Evolution of deformation and breakage in sand studied using X-ray tomography[J]. Géotechnique, 2018, 68(2): 107-117. doi: 10.1680/jgeot.16.P.208
|
[17] |
CHENG Z, WANG J F. An investigation of the breakage behaviour of a pre-crushed carbonate sand under shear using X-ray micro-tomography[J]. Engineering Geology, 2021, 293: 106286. doi: 10.1016/j.enggeo.2021.106286
|
[18] |
ZHANG S M, SAXENA N, BARTHELEMY P, et al. Poromechanics investigation at pore-scale using digital rock physics laboratory[C]// The Proceedings of 2011 COMSOL Conference in Stuttgart, Stuttgart, 2011.
|
[19] |
CHARALAMPIDOU E-M, HALL S A, STANCHITS S, et al. Characterization of shear and compaction bands in a porous sandstone deformed under triaxial compression[J]. Tectonophysics, 2011, 503(1/2): 8-17.
|
[20] |
FANG X W, HU F H, YAO Z H, et al. Development and application of triaxial apparatus for soil with high bearing pressure by computed tomography[J]. Journal of Testing and Evaluation, 2023, 51(6): 20220584.
|
[21] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[22] |
HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
|
[23] |
WILDENSCHILD D, SHEPPARD A P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J]. Advances in Water Resources, 2013, 51: 217-246. doi: 10.1016/j.advwatres.2012.07.018
|
[24] |
VASILE G, OVARLEZ J P, PASCAL F, et al. Coherency matrix estimation of heterogeneous clutter in high-resolution polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1809-1826. doi: 10.1109/TGRS.2009.2035496
|
[25] |
BAY B K, SMITH T S, FYHRIE D P, et al. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography[J]. Experimental Mechanics, 1999, 39(3): 217-226. doi: 10.1007/BF02323555
|
[26] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
|
[1] | LIN Chao, JIANG Rong, XIAO Shucong, WANG Zuxian. Mechanism of influences of shield construction nearby friction pile foundation on its bearing capacity and its controlling techniques[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 241-246. DOI: 10.11779/CJGE2023S20035 |
[2] | MU Lin-long, ZHU Meng-xi, HUANG Mao-song, KANG Jing-wen, JI Zhi-chao, YU Xing. Control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 465-470. DOI: 10.11779/CJGE202103009 |
[3] | XIE Xiong-yao, ZHANG Yong-lai, ZHOU Biao, ZENG Li, LIU Feng-zhou. Micro-settling control technology for shield tunnels crossing old buildings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1781-1789. DOI: 10.11779/CJGE201910001 |
[4] | HU Ying-guo, WU Xin-xia, ZHAO Gen, LI Peng, SUN Peng-ju. Investigation of safety control for rock blasting excavation under cold condition[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2139-2146. DOI: 10.11779/CJGE201711023 |
[5] | TIAN Hao, LI Shu-cai, WANG Zhe-chao, XUE Yi-guo, ZHOU Yi, JIANG Yan-yan, ZHAO Jian-gang, WANG Lun-xiang, LÜ Xiao-qing. Field monitoring and stability analysis of underground crude oil storage caverns in construction phase[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1710-1720. DOI: 10.11779/CJGE201509021 |
[6] | LI Xi-lin, WEI Xiang, LIANG Zhi-rong. Design practice and analysis of deformation control of deep excavations in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 160-164. DOI: 10.11779/CJGE2014S1028 |
[7] | LIU Dong-hai, WANG Qian, CUI Bo, SHEN Si-yuan, LIU Xing-ning, WANG Qi-feng. Control standards for compaction parameters of earth-rock dams under continuous construction process monitoring[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1712-1716. |
[8] | WENG Xiao-lin, ZHANG Chao, MA Hao-hao, SONG Wen-jia. Control criteria for differential settlement of widened road[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1705-1711. |
[9] | LI Lingling, WANG Lizhong. Contruction control and monitoring of shield tunnels under newly-built sea embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 995-1003. |
[10] | KONG Heng, MA Nianjie, WANG Mengshu, ZHANG Dehua. Stabilization control of rock bolted roadways based on dynamic monitoring and feedback of surrounding rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 475-478. |
1. |
张翔,陈莹,雷真,范翔,赵彦淇. 高温冷热循环对花岗岩物理力学性能的影响. 科学技术与工程. 2025(02): 737-752 .
![]() | |
2. |
翟明磊,李振华,杜锋,白海波,王文强. 考虑浆液渗流–岩体变形耦合作用的裂隙注浆模拟试验系统研制与应用. 岩石力学与工程学报. 2024(04): 878-889 .
![]() | |
3. |
周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 .
![]() | |
4. |
崔溦,裴介渲,江志安. 动水作用下岩体裂隙中颗粒运动规律的试验研究. 岩土力学. 2024(10): 2870-2878 .
![]() | |
5. |
罗涛,黄正濛,李兵磊,刘谦,刘辉,陈志强. 含二维和三维预制裂隙的脆性岩石试样的破坏特征数值验证. 南昌大学学报(工科版). 2024(03): 345-350 .
![]() | |
6. |
孙强,高千,张玉良,胡建军,耿济世,周书涛,袁士豪. 干热岩开发中高温水-岩作用下岩石应力腐蚀及多场损伤问题. 地球科学与环境学报. 2023(03): 460-473 .
![]() | |
7. |
张乐 ,杨志兵 ,李东奇 ,陈益峰 . 浆液在透明复制裂隙中驱替行为的可视化试验研究. 岩土力学. 2023(06): 1708-1718 .
![]() | |
8. |
孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 .
![]() | |
9. |
吕鑫,杨科,方珏静,段敏克,王于,张寨男. 采空区破碎岩体负压注浆加固试验研究与机制分析. 岩石力学与工程学报. 2023(S2): 4174-4188 .
![]() | |
10. |
李奔,刘汉乐,李培华,程锡治,王清,黄仕龙,刘新宇,金明哲. 碳酸盐岩石裂隙中DNAPL污染物迁移过程的电阻率成像. 地球物理学进展. 2023(06): 2704-2713 .
![]() |