• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Fenghui, FANG Xiangwei, SHEN Chunni, YAO Zhihua, CHEN Zhenghan. Evolution characteristics of mesoscopic pore structure for coral sand samples based on CT-triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 936-947. DOI: 10.11779/CJGE20231224
Citation: HU Fenghui, FANG Xiangwei, SHEN Chunni, YAO Zhihua, CHEN Zhenghan. Evolution characteristics of mesoscopic pore structure for coral sand samples based on CT-triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 936-947. DOI: 10.11779/CJGE20231224

Evolution characteristics of mesoscopic pore structure for coral sand samples based on CT-triaxial tests

More Information
  • Received Date: December 13, 2023
  • Available Online: September 28, 2024
  • The evolution characteristics of pore structure during loading have an important influence on the mechanics of coral sand. Using the self-developed high-pressure geotechnical CT-triaxial apparatus, the triaxial consolidated tests on the coral sand with a confining pressure of 100~1600 kPa are carried out under the premise of ensuring the conventional size of samples. The real-time CT scanning of the coral sand samples is carried out during loading. The shape parameters of pores like sphericity and anisotropy are analyzed according to the CT images, and the evolution characteristics of pore structure for the coral sand are analyzed by the digital volume correlation method. The results show that the evolution of pore structure for coral sand samples during the loading process can be roughly divided into three stages under the influences of confining pressure and particle breakage. That is, the loading end (section Ⅰ) is mainly affected by compression, the porosity decreases because of the particle breakage and movement, and the local strain is mainly negative. While in the middle and lower parts of the samples (sections Ⅱ and Ⅲ), the combination of slipping particles and increasing porosity macroscopically shows dilatation at low confining pressure, and the local strain shows positive strain. However, the high confining pressure and particle breakage inhibit dilatation. It is explained that the shear zone of the sand samples often occurs in the middle and lower parts of the samples at low confining pressure. During loading, the pore shape of the samples becomes closer to spherical and isotropic with the increase of confining pressure, and the deformation of the samples increases with the axial strain and gradually decreases under the constraint of high confining pressure. The pore volume and local strain of the samples are gradually stabilized during loading. The research results are of great significance for understanding the engineering mechanical properties of the coral sand.
  • [1]
    吴杨, 崔杰, 李能, 等. 岛礁吹填珊瑚砂力学行为与颗粒破碎特性试验研究[J]. 岩土力学, 2020, 41(10): 3181-3191.

    WU Yang, CUI Jie, LI Neng, et al. Experimental study on the mechanical behavior and particle breakage characteristics of hydraulic filled coral sand on a coral reef island in the South China Sea[J]. Rock and Soil Mechanics, 2020, 41(10): 3181-3191. (in Chinese)
    [2]
    蔡正银, 陈元义, 朱洵, 等. 级配对珊瑚砂颗粒破碎与变形特性的影响[J]. 岩土工程学报, 2023, 45(4): 661-670. doi: 10.11779/CJGE20220884

    CAI Zhengyin, CHEN Yuanyi, ZHU Xun, et al. Influences of gradation on particle breakage and deformation characteristics of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 661-670. (in Chinese) doi: 10.11779/CJGE20220884
    [3]
    FANG X W, YANG Y, CHEN Z, et al. Influence of fiber content and length on engineering properties of MICP-treated coral sand[J]. Geomicrobiology Journal, 2020, 37(6): 582-594. doi: 10.1080/01490451.2020.1743392
    [4]
    HU F H, FANG X W, YAO Z H, et al. Experiment and discrete element modeling of particle breakage in coral sand under triaxial compression conditions[J]. Marine Georesources & Geotechnology, 2023, 41(2): 142-151.
    [5]
    陈海洋. 钙质砂的内孔隙研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2005.

    CHEN Haiyang. Study on Internal Porosity of Calcareous Sand[D]. Wuhan: Graduate University of Chinese Academy of Sciences (Wuhan Institute of Rock and Soil Mechanics), 2005. (in Chinese)
    [6]
    蒋明镜, 吴迪, 曹培, 等. 基于SEM图片的钙质砂连通孔隙分析[J]. 岩土工程学报, 2017, 39(增刊1): 1-5. doi: 10.11779/CJGE2017S1001

    JIANG Mingjing, WU Di, CAO Pei, et al. Connected pore analysis of calcareous sand based on SEM images[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 1-5. (in Chinese) doi: 10.11779/CJGE2017S1001
    [7]
    周博, 库泉, 吕珂臻, 等. 钙质砂颗粒内孔隙三维表征[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊1): 41-48.

    ZHOU Bo, KU Quan, LÜ Kezhen, et al. Three-dimensional characterization of pores in calcareous sand particles[J]. Journal of Tianjin University (Natural Science And Engineering Technology Edition), 2019, 52(S1): 41-48. (in Chinese)
    [8]
    程壮, 王剑锋. 用于颗粒土微观力学行为试验的微型三轴试验仪[J]. 岩土力学, 2018, 39(3): 1123-1129.

    CHENG Zhuang, WANG Jianfeng. A mini-triaxial apparatus for testing of micro-scale mechanical behavior of granular soils[J]. Rock and Soil Mechanics, 2018, 39(3): 1123-1129. (in Chinese)
    [9]
    蒋明镜, 李光帅, 曹培, 等. 用于土体宏微观力学特性测试的微型三轴仪研制[J]. 岩土工程学报, 2020, 42(增刊1): 6-10. doi: 10.11779/CJGE2020S1002

    JIANG Mingjing, LI Guangshuai, CAO Pei, et al. Development of micro triaxial instrument for macro and micro mechanical properties testing of soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 6-10. (in Chinese) doi: 10.11779/CJGE2020S1002
    [10]
    DESRUES J, CHAMBON R, MOKNI M, et al. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[J]. Géotechnique, 1996, 46(3): 529-546. doi: 10.1680/geot.1996.46.3.529
    [11]
    李晓军, 张登良. 路基填土单轴受压细观结构CT监测分析[J]. 岩土工程学报, 2000, 22(2): 205-209. doi: 10.3321/j.issn:1000-4548.2000.02.012

    LI Xiaojun, ZHANG Dengliang. Monitoring change of structure of road foundation soil in uniaxial compression test with CT[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 205-209. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.02.012
    [12]
    陈正汉, 卢再华, 蒲毅彬. 非饱和土三轴仪的CT机配套及其应用[J]. 岩土工程学报, 2001, 23(4): 387-392. doi: 10.3321/j.issn:1000-4548.2001.04.001

    CHEN Zhenghan, LU Zaihua, PU Yibin. The matching of computerized tomograph with triaxial test apparatus for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 387-392. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.001
    [13]
    ODA M, KAZAMA H. Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[J]. Géotechnique, 1998, 48(4): 465-481. doi: 10.1680/geot.1998.48.4.465
    [14]
    MATSUSHIMA T, KATAGIRI J, UESUGI K, et al. Micro X-ray CT at spring-8 for granular mechanics[M]// Solid Mechanics and its Applications. Dordrecht: Springer Netherlands, 2003: 225-234.
    [15]
    HALL S A, BORNERT M, DESRUES J, et al. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation[J]. Géotechnique, 2010, 60(5): 315-322. doi: 10.1680/geot.2010.60.5.315
    [16]
    KARATZA Z, ANDÒ E, PAPANICOLOPULOS S A, et al. Evolution of deformation and breakage in sand studied using X-ray tomography[J]. Géotechnique, 2018, 68(2): 107-117. doi: 10.1680/jgeot.16.P.208
    [17]
    CHENG Z, WANG J F. An investigation of the breakage behaviour of a pre-crushed carbonate sand under shear using X-ray micro-tomography[J]. Engineering Geology, 2021, 293: 106286. doi: 10.1016/j.enggeo.2021.106286
    [18]
    ZHANG S M, SAXENA N, BARTHELEMY P, et al. Poromechanics investigation at pore-scale using digital rock physics laboratory[C]// The Proceedings of 2011 COMSOL Conference in Stuttgart, Stuttgart, 2011.
    [19]
    CHARALAMPIDOU E-M, HALL S A, STANCHITS S, et al. Characterization of shear and compaction bands in a porous sandstone deformed under triaxial compression[J]. Tectonophysics, 2011, 503(1/2): 8-17.
    [20]
    FANG X W, HU F H, YAO Z H, et al. Development and application of triaxial apparatus for soil with high bearing pressure by computed tomography[J]. Journal of Testing and Evaluation, 2023, 51(6): 20220584.
    [21]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [22]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [23]
    WILDENSCHILD D, SHEPPARD A P. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J]. Advances in Water Resources, 2013, 51: 217-246. doi: 10.1016/j.advwatres.2012.07.018
    [24]
    VASILE G, OVARLEZ J P, PASCAL F, et al. Coherency matrix estimation of heterogeneous clutter in high-resolution polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 1809-1826. doi: 10.1109/TGRS.2009.2035496
    [25]
    BAY B K, SMITH T S, FYHRIE D P, et al. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography[J]. Experimental Mechanics, 1999, 39(3): 217-226. doi: 10.1007/BF02323555
    [26]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
  • Related Articles

    [1]LIN Chao, JIANG Rong, XIAO Shucong, WANG Zuxian. Mechanism of influences of shield construction nearby friction pile foundation on its bearing capacity and its controlling techniques[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 241-246. DOI: 10.11779/CJGE2023S20035
    [2]MU Lin-long, ZHU Meng-xi, HUANG Mao-song, KANG Jing-wen, JI Zhi-chao, YU Xing. Control criteria for deformation of foundation pits based on protection requirements of adjacent pile foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 465-470. DOI: 10.11779/CJGE202103009
    [3]XIE Xiong-yao, ZHANG Yong-lai, ZHOU Biao, ZENG Li, LIU Feng-zhou. Micro-settling control technology for shield tunnels crossing old buildings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1781-1789. DOI: 10.11779/CJGE201910001
    [4]HU Ying-guo, WU Xin-xia, ZHAO Gen, LI Peng, SUN Peng-ju. Investigation of safety control for rock blasting excavation under cold condition[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2139-2146. DOI: 10.11779/CJGE201711023
    [5]TIAN Hao, LI Shu-cai, WANG Zhe-chao, XUE Yi-guo, ZHOU Yi, JIANG Yan-yan, ZHAO Jian-gang, WANG Lun-xiang, LÜ Xiao-qing. Field monitoring and stability analysis of underground crude oil storage caverns in construction phase[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1710-1720. DOI: 10.11779/CJGE201509021
    [6]LI Xi-lin, WEI Xiang, LIANG Zhi-rong. Design practice and analysis of deformation control of deep excavations in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 160-164. DOI: 10.11779/CJGE2014S1028
    [7]LIU Dong-hai, WANG Qian, CUI Bo, SHEN Si-yuan, LIU Xing-ning, WANG Qi-feng. Control standards for compaction parameters of earth-rock dams under continuous construction process monitoring[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1712-1716.
    [8]WENG Xiao-lin, ZHANG Chao, MA Hao-hao, SONG Wen-jia. Control criteria for differential settlement of widened road[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1705-1711.
    [9]LI Lingling, WANG Lizhong. Contruction control and monitoring of shield tunnels under newly-built sea embankments[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 995-1003.
    [10]KONG Heng, MA Nianjie, WANG Mengshu, ZHANG Dehua. Stabilization control of rock bolted roadways based on dynamic monitoring and feedback of surrounding rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 475-478.
  • Cited by

    Periodical cited type(10)

    1. 张翔,陈莹,雷真,范翔,赵彦淇. 高温冷热循环对花岗岩物理力学性能的影响. 科学技术与工程. 2025(02): 737-752 .
    2. 翟明磊,李振华,杜锋,白海波,王文强. 考虑浆液渗流–岩体变形耦合作用的裂隙注浆模拟试验系统研制与应用. 岩石力学与工程学报. 2024(04): 878-889 .
    3. 周新,盛建龙,叶祖洋. 基于LBM的粗糙裂隙内两相驱替渗流特性模拟研究. 力学学报. 2024(05): 1475-1487 .
    4. 崔溦,裴介渲,江志安. 动水作用下岩体裂隙中颗粒运动规律的试验研究. 岩土力学. 2024(10): 2870-2878 .
    5. 罗涛,黄正濛,李兵磊,刘谦,刘辉,陈志强. 含二维和三维预制裂隙的脆性岩石试样的破坏特征数值验证. 南昌大学学报(工科版). 2024(03): 345-350 .
    6. 孙强,高千,张玉良,胡建军,耿济世,周书涛,袁士豪. 干热岩开发中高温水-岩作用下岩石应力腐蚀及多场损伤问题. 地球科学与环境学报. 2023(03): 460-473 .
    7. 张乐 ,杨志兵 ,李东奇 ,陈益峰 . 浆液在透明复制裂隙中驱替行为的可视化试验研究. 岩土力学. 2023(06): 1708-1718 .
    8. 孔德森,赵明凯,时健,滕森. 基于分形维数特征的岩石介质气-水相对渗透率预测模型研究. 岩土工程学报. 2023(07): 1421-1429 . 本站查看
    9. 吕鑫,杨科,方珏静,段敏克,王于,张寨男. 采空区破碎岩体负压注浆加固试验研究与机制分析. 岩石力学与工程学报. 2023(S2): 4174-4188 .
    10. 李奔,刘汉乐,李培华,程锡治,王清,黄仕龙,刘新宇,金明哲. 碳酸盐岩石裂隙中DNAPL污染物迁移过程的电阻率成像. 地球物理学进展. 2023(06): 2704-2713 .

    Other cited types(8)

Catalog

    Article views (229) PDF downloads (78) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return