• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Min, HUANG Yinghao, DONG Shijun, ZHANG Rongjun. Effects of polymer flocculant on dredged sediment by plate and frame filter press dewatering technology and its influence mechanism[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 470-476. DOI: 10.11779/CJGE20231212
Citation: WU Min, HUANG Yinghao, DONG Shijun, ZHANG Rongjun. Effects of polymer flocculant on dredged sediment by plate and frame filter press dewatering technology and its influence mechanism[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 470-476. DOI: 10.11779/CJGE20231212

Effects of polymer flocculant on dredged sediment by plate and frame filter press dewatering technology and its influence mechanism

More Information
  • Received Date: December 10, 2023
  • Available Online: July 15, 2024
  • The plate and frame filter press dewatering technology has been gradually popularized and applied in treatment projects of dredged sediment, but there are problems such as poor applicability of flocculant selection and unclear mechanism. In response to the phenomenon, two typical polymer flocculants are selected. One is the synthetic polyacrylamide flocculant with more applications in engineering, and the other is the natural environment-friendly flocculant chitosan. Through the measuring cylinder settling column experiment, the variation rules of settlement and dewatering of the dredged sediment are studied under two flocculants of anionic polyacrylamide (APAM) and chitosan with different dosages and the optimal dosage of flocculants is obtained. The settling volume of dredged sediment (after 7 days) under the optimal dosage is reduced by 25.9% and 32.4% respectively compared with the original sediment. On this basis, the combined flocculation and plate and frame filter press dewatering tests are carried out. The results show that the addition of APAM has a greater impact on the dewatering of the dredged sediment at the filtration stage. The dewatering effects of the chitosan-added sediment are better at the pressing stage. During the process of plate and frame filter press, the filtrate of the mud cake with APAM and chitosan flocculants increase by 17.23% and 24.5%, respectively, compared with those of the original sediment. The influence mechanism of APAM and chitosan on the dewatering effects of the dredged sediment by the plate and frame filter press is further investigated by using the particle size analysis, XRD and SEM tests. The particle analysis tests show that after the addition of 0.6‰ APAM and 1.8‰ chitosan, the small particles in the dredged sediment are bridged into large particle flocs by flocculation, and the lengths of d90 increase from 10.97 μm to 29.48 and 29.63 μm, respectively.
  • [1]
    黄英豪, 戴济群, 徐锴. 新拌固化淤泥的流动性和黏滞性试验研究[J]. 岩土工程学报, 2022, 44(2): 235-244. doi: 10.11779/CJGE202202004

    HUANG Yinghao, DAI Jiqun, XU Kai. Flowability and viscosity of freshly solidified dredged materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 235-244. (in Chinese) doi: 10.11779/CJGE202202004
    [2]
    朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术" 的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054.

    ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of "mud science and application technology" and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese)
    [3]
    包建平, 朱伟, 闵佳华. 中小河道治理中的清淤及淤泥处理技术[J]. 水资源保护, 2015, 31(1): 56-62, 68.

    BAO Jianping, ZHU Wei, MIN Jiahua. Technology of dredging and sludge treatment in small and medium-sized river regulation[J]. Water Resources Protection, 2015, 31(1): 56-62, 68. (in Chinese)
    [4]
    郑爱荣, 朱洪满. 絮凝加速吹填土沉积的试验研究[J]. 岩土工程学报, 2017, 39(增刊2): 145-148. doi: 10.11779/CJGE2017S2036

    ZHENG Airong, ZHU Hongman. Experimental study on flocculation-accelerated deposition of dredger fill[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 145-148. (in Chinese) doi: 10.11779/CJGE2017S2036
    [5]
    徐桂中, 杨瑞敏, 丁建文, 等. 高含水率疏浚泥堆场颗粒分选规律现场试验研究[J]. 东南大学学报(自然科学版), 2013, 43(3): 634-638.

    XU Guizhong, YANG Ruimin, DING Jianwen, et al. Field experiment on grain sorting behaviors in reclaimed land of dredged slurries with high water content[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(3): 634-638. (in Chinese)
    [6]
    汪顺才, 张春雷, 黄英豪, 等. 堆场疏浚淤泥含水率分布规律调查研究[J]. 岩土力学, 2010, 31(9): 2823-2828. doi: 10.3969/j.issn.1000-7598.2010.09.022

    WANG Shuncai, ZHANG Chunlei, HUANG Yinghao, et al. Study of diversification of water contents in dredged sediment storage yard[J]. Rock and Soil Mechanics, 2010, 31(9): 2823-2828. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.09.022
    [7]
    张春雷, 管非凡, 李磊, 等. 中国疏浚淤泥的处理处置及资源化利用进展[J]. 环境工程, 2014, 32(12): 95-99.

    ZHANG Chunlei, GUAN Feifan, LI Lei, et al. The progress in the reutillzation treatment and disposal of dredged sediments in China[J]. Environmental Engineering, 2014, 32(12): 95-99. (in Chinese)
    [8]
    崔岩, 侯豪, 吴思麟, 等. 淤泥板框压滤、脱水阶段特征及简化评价指标研究[J]. 环境科技, 2019, 32(4): 1-5.

    CUI Yan, HOU Hao, WU Silin, et al. Study on two-stage characteristics of mud dewatering by plate-frame pressure filtration and simplified evaluation index[J]. Environmental Science and Technology, 2019, 32(4): 1-5. (in Chinese)
    [9]
    詹良通, 尹昭宇, 陈萍, 等. 洗砂泥浆压滤脱水性能及快速检测方法[J]. 岩土力学, 2022, 43(3): 769-776, 856.

    ZHAN Liangtong, YIN Zhaoyu, CHEN Ping, et al. Pressure filtration dewatering performance of sand-washing slurry and rapid test method[J]. Rock and Soil Mechanics, 2022, 43(3): 769-776, 856. (in Chinese)
    [10]
    章荣军, 董超强, 郑俊杰, 等. 絮凝剂和缓凝剂对水泥固化疏浚淤泥浆效率的影响研究[J]. 岩土工程学报, 2019, 41(10): 1928-1935. doi: 10.11779/CJGE201910018

    ZHANG Rongjun, DONG Chaoqiang, ZHENG Junjie, et al. Influences of flocculant and retarder on solidification efficiency of cement in treatment of dredged mud slurry[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1928-1935. (in Chinese) doi: 10.11779/CJGE201910018
    [11]
    武亚军, 陆逸天, 骆嘉成, 等. 药剂真空预压法在工程废浆处理中的防淤堵作用[J]. 岩土工程学报, 2017, 39(3): 525-533. doi: 10.11779/CJGE201703017

    WU Yajun, LU Yitian, LUO Jiacheng, et al. Anti-clogging function of vacuum preloading with flocculants in solid-liquid separation of construction waste slurry[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 525-533. (in Chinese) doi: 10.11779/CJGE201703017
    [12]
    李世汩, 张洋, 夏新星, 等. 复合调理对淤泥机械压滤脱水特性的影响机理分析[J]. 长江科学院院报, 2024, 41(4): 29-36.

    LI Shimi, ZHANG Yang, XIA Xinxing, et al. Influence mechanism of composite conditioning of sludge on dehydration performance of mechanical pressure filtration[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(4): 29-36. (in Chinese)
    [13]
    ZHANG J, HU Q, LU J, et al. Study on the effect of chitosan conditioning on sludge dewatering[J]. Water Science and Technology, 2019, 79(3): 501-509. doi: 10.2166/wst.2019.073
    [14]
    LIU F Y, WU W Q, FU H T, et al. Application of flocculation combined with vacuum preloading to reduce river-dredged sludge[J]. Marine Georesources & Geotechnology, 2020, 38(2): 164-173. http://www.xueshufan.com/publication/2912632278
    [15]
    蒲诃夫, 潘友富, DIBANGAR K, 等. 絮凝-水平真空两段式脱水法处理高含水率疏浚淤泥模型试验研究[J]. 岩土力学, 2020, 41(5): 1502-1509.

    PU Hefu, PAN Youfu, DIBANGAR K, et al. Model test on dewatering of high-water-content dredged slurry by flocculation-horizontal vacuum two-staged method[J]. Rock and Soil Mechanics, 2020, 41(5): 1502-1509. (in Chinese)
    [16]
    闫高原, 韦重韬, 宋昱, 等. 基于Ar-SEM及PCAS页岩孔隙结构定量表征[J]. 地球科学, 2018, 43(5): 1602-1610.

    YAN Gaoyuan, WEI Chongtao, SONG Yu, et al. Quantitative characterization of shale pore structure based on Ar-SEM and PCAS[J]. Earth Science, 2018, 43(5): 1602-1610. (in Chinese)
    [17]
    ZHANG W J, WANG H D, LI L Q, et al. Impact of molecular structure and charge property of chitosan based polymers on flocculation conditioning of advanced anaerobically digested sludge for dewaterability improvement[J]. Science of the Total Environment, 2019, 670: 98-109. doi: 10.1016/j.scitotenv.2019.03.156
  • Related Articles

    [1]LI San-ming, YAN Bo, AN Hai-tang, CHENG Zong-liang, XU Wei. Causes and processing methods for quality defects of soft foundation reinforcement using CFG piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 216-219. DOI: 10.11779/CJGE2017S2052
    [2]WU Hai-min, SHU Yi-ming, CHANG Guang-pin, LIU Yun-feng, LIU Xin-xin, GU Ke. Field model tests on effective dewatering technology of geotextile tube filled by soil with high clay (silt) particle content[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 209-215. DOI: 10.11779/CJGE2016S1039
    [3]ZHUANG Yan, MU Fan, CUI Xiao-yan, ZHANG Hai-xia. Application of Benoto pile in concealed bridge piled project near subway[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 41-45. DOI: 10.11779/CJGE2015S2009
    [4]CHEN Fu, LI Hai-tao. Construction technology of cement deep mixing piles in Huanghua Port region[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 156-160. DOI: 10.11779/CJGE2015S1030
    [5]MENG Qing-bin, HAN Li-jun, SHI Rong-jian, LIU Zhi-jun, LU Tuo, LI Xiang-yang, SHI Gao-peng. Study and application of construction technology for inclined shafts penetrating drift sand strata in coal mine[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 900-910. DOI: 10.11779/CJGE201505016
    [6]LOU Nan, LIU Jun-yan, CAO Han-qing, CUI Wei-jiu. Construction technology for connecting passage of foundation pit under existing optical fiber cables of Greeland Center[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 212-215. DOI: 10.11779/CJGE2014S2035
    [7]YAN Ping, QIU Li. Hard bearing layer composite pile technology of rigid core rod-embedded strong mixing soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1033-1036.
    [8]FANG Peng-fei, DONG Hong-bo. Construction technology of TC piles and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 116-119.
    [9]FANG Pengfei, ZHU Xiangrong, WU Caixia, YANG Jianhua. Technology and bearing behavior of cast-in-place pile with self-enlarging diving casing[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1905-1909.
    [10]LI Mingdong, ZHU Wei, MA Dianguang, JI Fengling. Construction technology and application in-situ of expanded polystyrene treated lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 533-536.
  • Cited by

    Periodical cited type(15)

    1. 程虎,李重情,穆朝民. 冻结温度对不同粒径冻土石混合体劈裂特性的影响. 煤矿安全. 2024(01): 160-166 .
    2. 张勇敢,鲁洋,刘斯宏,田金博,张思钰,方斌昕. 土工袋抑制膨胀土冻胀性能试验及机制探讨. 岩土力学. 2024(03): 759-768+796 .
    3. 陈鑫,余文亮. 混合型缓冲回填材料劈裂抗拉强度尺寸效应统计分析. 科学技术与工程. 2024(10): 4229-4238 .
    4. 吴进财,孙屹,毕朝达,郁舒阳. 基于SPH方法的土体干缩开裂数值模拟研究. 水电能源科学. 2024(11): 87-91 .
    5. 田金博,张勇敢,鲁洋,马文鑫,刘斯宏,王柳江,刘瑾. 考虑初始饱和度影响的冻结渠坡膨胀土力学特性. 哈尔滨工业大学学报. 2024(11): 123-131 .
    6. 韦四江,翟黎伟,王猛,高继耀,王生柱,李鑫鹏. 不同速率加锚煤样抗拉力学响应特征试验研究. 采矿与安全工程学报. 2023(03): 458-466 .
    7. 谢敬礼,彭浩,杨明桃,杨建明,马利科. 缓冲/回填材料砌块抗拉强度试验研究. 世界核地质科学. 2023(02): 288-297 .
    8. 马冬冬,汪鑫鹏,张文璞,马芹永,周志伟,张蓉蓉. 冲击荷载作用下冻土劈裂拉伸破坏特性试验研究. 岩土工程学报. 2023(07): 1533-1539 . 本站查看
    9. 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型. 吉林大学学报(工学版). 2023(08): 2339-2349 .
    10. 刘勤龙,李旭,姚兆明,吴永康,蔡德钩. 冻土强度特性及其主控因素综述. 冰川冻土. 2023(03): 1092-1104 .
    11. 张思钰,张勇敢,刘斯宏,鲁洋. 膨胀土巴西劈裂强度及其破坏能量演化规律. 哈尔滨工业大学学报. 2023(11): 125-134 .
    12. 马文鑫,张勇敢,刘斯宏,郑军威,凤良,鲁洋. 干密度和温度对冻结膨胀土单轴压缩特性影响的试验研究. 冰川冻土. 2022(02): 515-523 .
    13. 张勇敢,刘斯宏,鲁洋,方斌昕,廖洁,张思钰. 袋装膨胀土强度变形特性及其碾压质量控制与检测. 河海大学学报(自然科学版). 2022(05): 118-123 .
    14. 王海航,周扬,赵晓东,王建州,周国庆. 冻土抗拉强度研究现状与展望. 冰川冻土. 2022(06): 1807-1819 .
    15. 郝常昊,任富强. 高原露天矿山冻土力学特性实验研究. 辽宁科技大学学报. 2022(06): 443-448 .

    Other cited types(15)

Catalog

    Article views (323) PDF downloads (57) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return