Citation: | WANG Chao, ZOU Jinfeng, SHU Dan, WU Qinhua. Critical safe distance of shield tunnels crossing pile foundation of existing bridges at orthogonal side[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 779-791. DOI: 10.11779/CJGE20231192 |
[1] |
ZHANG L W, FU H, WU J, et al. Effects of karst cave shape on the stability and minimum safety thickness of tunnel surrounding rock[J]. International Journal of Geomechanics, 2021, 21(9): 04021150. doi: 10.1061/(ASCE)GM.1943-5622.0002054
|
[2] |
武世燕. 岩溶区隧道隔水岩盘安全厚度预测[J]. 隧道建设(中英文), 2021, 41(12): 2083-2092.
WU Shiyan. Prediction of safe thickness of water-insulating rock disks in tunnels in karst areas[J]. Tunnel Construction, 2021, 41(12): 2083-2092. (in Chinese)
|
[3] |
LI L P, XIONG Y F, WANG J, et al. Comprehensive influence analysis of multiple parameters on the safety thickness against water inrush in shield tunnel[J]. International Journal of Geomechanics, 2020, 20(12): 04020226. doi: 10.1061/(ASCE)GM.1943-5622.0001870
|
[4] |
FU H L, AN P T, HUANG Z, et al. Determination of safety distance of twin tunnel underpassing existing tunnels[J]. Advances in Environmental Vibration and Transportation Geodynamics, 2020, 66(4): 839-848.
|
[5] |
LIU Q W, SUN S Q, WANG H B, et al. A calculation method for safety distance between the confined karst cave and the shield tunnel based on upper bound theorem[J]. Geotechnical and Geological Engineering, 2020, 38(12): 6587-6599.
|
[6] |
LAI Y B, WANG M S, BAI C U. Predicting model of safe distance between tunnel and karst cave[J]. Applied Mechanics and Materials, 2014, 470(1): 862-865.
|
[7] |
YANG X L, LI Z W, LIU Z G, et al. Collapse analysis of tunnel floor in karst area based on Hoek-Brown rock media[J]. Journal of Central South University, 2017, 24(4): 957-966.
|
[8] |
付成华, 陈胜宏. 基于突变理论的地下工程洞室围岩失稳判据研究[J]. 岩土力学, 2008, 29(1): 167-172.
FU Chenghua, CHEN Shenghong. Study on instability criteria of surrounding rock of underground engineering cavern based on catastrophe theory[J]. Rock and Soil Mechanics, 2008, 29(1): 167-172. (in Chinese)
|
[9] |
师海, 白明洲, 许兆义, 等. 基于突变理论的岩溶隧道与隐伏溶洞安全距离分析[J]. 现代隧道技术, 2016, 53(4): 61-69.
SHI Hai, BAI Mingzhou, XU Zhaoyi, et al. Analysis of the safe distance between a Karst tunnel and a concealed karst cave based on catastrophe theory[J]. Modern Tunnelling Technology, 2016, 53(4): 61-69. (in Chinese)
|
[10] |
赖永标. 隐伏溶洞与隧道间安全距离及其智能预测模型研究[D]. 北京: 北京交通大学, 2012.
LAI Yongbiao. Study on Safe Distance between Hidden Cave and Tunnel and Its Intelligent Prediction Model[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
|
[11] |
JIANG C, ZHAO M H, CAO W G. Stability analysis of subgrade cave roofs in karst region[J]. Journal of Central South University of Technology, 2008, 15(S2): 38-44.
|
[12] |
赵延林, 吴启红, 王卫军, 等. 基于突变理论的采空区重叠顶板稳定性强度折减法及应用[J]. 岩石力学与工程学报, 2010, 29(7): 1424-1434.
ZHAO Yanlin, WU Qihong, WANG Weijun, et al. Strength reduction method to study stability of goaf overlapping roof based on catastrophe theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1424-1434. (in Chinese)
|
[13] |
尚向凡, 苗胜军, 于兆新, 等. 基于突变理论的采空区顶板安全厚度多因素预测模型[J]. 中国矿业, 2021, 30(12): 76-82.
SHANG Xiangfan, MIAO Shengjun, YU Zhaoxin, et al. Multi-factor prediction model of roof safety thickness in goaf based on catastrophe theory[J]. China Mining Magazine, 2021, 30(12): 76-82. (in Chinese)
|
[14] |
邹洋, 彭立敏, 张智勇, 等. 基于突变理论的岩溶隧道拱顶安全厚度分析与失稳预测[J]. 铁道科学与工程学报, 2021, 18(10): 2651-2659.
ZOU Yang, PENG Limin, ZHANG Zhiyong, et al. Safety thickness analysis and stability prediction of tunnel roof in karst region based on catastrophe theory[J]. Journal of Railway Science and Engineering, 2021, 18(10): 2651-2659. (in Chinese)
|
[15] |
张玲, 岳梢, 赵明华, 等. 基于改进Pasternak地基模型的桩柱式桥墩受力变形分析[J]. 岩土工程学报, 2022, 44(10): 1817-1826. doi: 10.11779/CJGE202210007
ZHANG Ling, YUE Shao, ZHAO Minghua, et al. Behaviors of pile-column piers based on modified pasternak foundation model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1817-1826. (in Chinese) doi: 10.11779/CJGE202210007
|
[16] |
冯国辉, 窦炳珺, 黄展军, 等. 盾构开挖引起邻近桩基水平位移的简化计算方法[J]. 湖南大学学报(自然科学版), 2022, 49(9): 136-144.
FENG Guohui, DOU Bingjun, HUANG Zhanjun, et al. Simplified calculation method for lateral displacement of adjacent pile due to tunneling[J]. Journal of Hunan University (Natural Sciences), 2022, 49(9): 136-144. (in Chinese)
|
[17] |
范秀江, 冯国辉, 薛芬芬, 等. 盾构开挖引起邻近单桩水平向变形解析研究[J]. 华东交通大学学报, 2023, 40(3): 17-23.
FAN Xiujiang, FENG Guohui, XUE Fenfen, et al. Study of horizontal deformation of adjacent single pile foundation induced by tunneling[J]. Journal of East China Jiaotong University, 2023, 40(3): 17-23. (in Chinese)
|
[18] |
LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
|
[19] |
WANG C M, KITIPORNCHAI S, LIM C W, et al. Beam bending solutions based on nonlocal Timoshenko beam theory[J]. Journal of Engineering Mechanics, 2008, 134(6): 475-481.
|
[20] |
ALBAS S D, ERSOY H, AKGÖZ B, et al. Dynamic analysis of a fiber-reinforced composite beam under a moving load by the ritz method[J]. Mathematics, 2021, 9(9): 1048.
|
[21] |
ZHANG X L, XUE J Y, XU C S, et al. An analysis method for lateral capacity of pile foundation under existing vertical loads[J]. Soil Dynamics and Earthquake Engineering, 2021, 142(5): 106547.
|
[22] |
VESIC A B. Bending of beam resting on isotropic elastic solid[J]. Journal of Engineering Mechanics Division, 1961, 87(2): 35-53.
|
[23] |
KERR A D. On the determination of foundation model parameters[J]. Journal of Geotechnical Engineering, 1985, 111(11): 1334-1340.
|
[24] |
CHENG C Y, DASARI G R, CHOW Y K, et al. Finite element analysis of tunnel-soil-pile interaction using displacement controlled model[J]. Tunnelling and Underground Space Technology, 2007, 22(4): 450-466.
|
[25] |
ZHANG Z G, HUANG M S, XU C, et al. Simplified solution for tunnel-soil-pile interaction in Pasternak's foundation model[J]. Tunnelling and Underground Space Technology, 2018, 78(8): 146-158.
|
[26] |
ZEEMAN E C. Catastrophe theory[J]. Scientific American, 1976, 234(4): 65-83.
|
[27] |
ZEEMAN E C. Bifurcation, catastrophe, and turbulence[M]. New York: Springer New York, 1982.
|
1. |
田晓丹,姜晓桢,殷友超,石泽译. 基于土工膜透声特性的膜下垫层渗透变形声波特征试验研究. 水利水电科技进展. 2025(02): 31-37 .
![]() | |
2. |
张宪雷,马仲阳,刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理. 岩土工程学报. 2024(11): 2333-2340 .
![]() | |
3. |
张宪雷,马仲阳,吴云云. 面膜堆石坝不同品种土工膜力学特性. 岩土工程学报. 2023(05): 940-952 .
![]() | |
4. |
徐国雷,张宪雷,马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理. 水电能源科学. 2022(12): 138-142 .
![]() | |
5. |
黄耀英,谢同,费大伟,包腾飞,颜剑. 基于测压管实测水位的王甫洲水利工程复合土工膜工作性态反馈. 岩土工程学报. 2021(03): 564-571 .
![]() |