• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Chao, ZOU Jinfeng, SHU Dan, WU Qinhua. Critical safe distance of shield tunnels crossing pile foundation of existing bridges at orthogonal side[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 779-791. DOI: 10.11779/CJGE20231192
Citation: WANG Chao, ZOU Jinfeng, SHU Dan, WU Qinhua. Critical safe distance of shield tunnels crossing pile foundation of existing bridges at orthogonal side[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 779-791. DOI: 10.11779/CJGE20231192

Critical safe distance of shield tunnels crossing pile foundation of existing bridges at orthogonal side

More Information
  • Received Date: December 04, 2023
  • Available Online: September 12, 2024
  • In order to investigate the safe construction distance of shield tunnel crossing the pile foundation of the existing bridges, taking the crossing construction at the orthogonal side as an example and considering the influences of the pile shear effects, we use the Pasternak two-parameter foundation model to establish the equilibrium differential equations for the horizontal displacements of the soil in the middle of the pile foundation of the existing bridges and the tunnels under construction, and the analytical solutions for the horizontal displacements of the pile-tunnel intermediate soil are derived. Based on the cusp catastrophe theory, the standard expression for the potential function of the pile-tunnel intermediate soil and the sufficient and necessary conditions for its system to be suddenly destabilized are determined. Accordingly, the method for calculating the critical safe distance of the pile foundation of the existing bridges is established, and its engineering applicability is verified through the numerical simulations and field measurements. The method is used to analyze the main influencing factors for the critical safe distance of the pile foundation of an existing bridge. The results show that the critical safe distance is approximately an exponential function with the diameter ratio of the pile foundation of the bridge, and the two parameters are positively correlated, while it follows a quadratic function of the shield tunnel depth ratio, and first increasing and then decreasing as the depth ratio increases, and reaches the maximum value when the depth ratio of the shield tunnel is 8.1. The theoretical values obtained by the proposed method and the estimated ones by the numerical simulation are well fitted, and the measured results and the relevant specifications also further verify the engineering applicability of this method. The proposed method provides theoretical guidance for the rational development of the design and construction program of similar tunnel crossing projects.
  • [1]
    ZHANG L W, FU H, WU J, et al. Effects of karst cave shape on the stability and minimum safety thickness of tunnel surrounding rock[J]. International Journal of Geomechanics, 2021, 21(9): 04021150. doi: 10.1061/(ASCE)GM.1943-5622.0002054
    [2]
    武世燕. 岩溶区隧道隔水岩盘安全厚度预测[J]. 隧道建设(中英文), 2021, 41(12): 2083-2092.

    WU Shiyan. Prediction of safe thickness of water-insulating rock disks in tunnels in karst areas[J]. Tunnel Construction, 2021, 41(12): 2083-2092. (in Chinese)
    [3]
    LI L P, XIONG Y F, WANG J, et al. Comprehensive influence analysis of multiple parameters on the safety thickness against water inrush in shield tunnel[J]. International Journal of Geomechanics, 2020, 20(12): 04020226. doi: 10.1061/(ASCE)GM.1943-5622.0001870
    [4]
    FU H L, AN P T, HUANG Z, et al. Determination of safety distance of twin tunnel underpassing existing tunnels[J]. Advances in Environmental Vibration and Transportation Geodynamics, 2020, 66(4): 839-848.
    [5]
    LIU Q W, SUN S Q, WANG H B, et al. A calculation method for safety distance between the confined karst cave and the shield tunnel based on upper bound theorem[J]. Geotechnical and Geological Engineering, 2020, 38(12): 6587-6599.
    [6]
    LAI Y B, WANG M S, BAI C U. Predicting model of safe distance between tunnel and karst cave[J]. Applied Mechanics and Materials, 2014, 470(1): 862-865.
    [7]
    YANG X L, LI Z W, LIU Z G, et al. Collapse analysis of tunnel floor in karst area based on Hoek-Brown rock media[J]. Journal of Central South University, 2017, 24(4): 957-966.
    [8]
    付成华, 陈胜宏. 基于突变理论的地下工程洞室围岩失稳判据研究[J]. 岩土力学, 2008, 29(1): 167-172.

    FU Chenghua, CHEN Shenghong. Study on instability criteria of surrounding rock of underground engineering cavern based on catastrophe theory[J]. Rock and Soil Mechanics, 2008, 29(1): 167-172. (in Chinese)
    [9]
    师海, 白明洲, 许兆义, 等. 基于突变理论的岩溶隧道与隐伏溶洞安全距离分析[J]. 现代隧道技术, 2016, 53(4): 61-69.

    SHI Hai, BAI Mingzhou, XU Zhaoyi, et al. Analysis of the safe distance between a Karst tunnel and a concealed karst cave based on catastrophe theory[J]. Modern Tunnelling Technology, 2016, 53(4): 61-69. (in Chinese)
    [10]
    赖永标. 隐伏溶洞与隧道间安全距离及其智能预测模型研究[D]. 北京: 北京交通大学, 2012.

    LAI Yongbiao. Study on Safe Distance between Hidden Cave and Tunnel and Its Intelligent Prediction Model[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [11]
    JIANG C, ZHAO M H, CAO W G. Stability analysis of subgrade cave roofs in karst region[J]. Journal of Central South University of Technology, 2008, 15(S2): 38-44.
    [12]
    赵延林, 吴启红, 王卫军, 等. 基于突变理论的采空区重叠顶板稳定性强度折减法及应用[J]. 岩石力学与工程学报, 2010, 29(7): 1424-1434.

    ZHAO Yanlin, WU Qihong, WANG Weijun, et al. Strength reduction method to study stability of goaf overlapping roof based on catastrophe theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1424-1434. (in Chinese)
    [13]
    尚向凡, 苗胜军, 于兆新, 等. 基于突变理论的采空区顶板安全厚度多因素预测模型[J]. 中国矿业, 2021, 30(12): 76-82.

    SHANG Xiangfan, MIAO Shengjun, YU Zhaoxin, et al. Multi-factor prediction model of roof safety thickness in goaf based on catastrophe theory[J]. China Mining Magazine, 2021, 30(12): 76-82. (in Chinese)
    [14]
    邹洋, 彭立敏, 张智勇, 等. 基于突变理论的岩溶隧道拱顶安全厚度分析与失稳预测[J]. 铁道科学与工程学报, 2021, 18(10): 2651-2659.

    ZOU Yang, PENG Limin, ZHANG Zhiyong, et al. Safety thickness analysis and stability prediction of tunnel roof in karst region based on catastrophe theory[J]. Journal of Railway Science and Engineering, 2021, 18(10): 2651-2659. (in Chinese)
    [15]
    张玲, 岳梢, 赵明华, 等. 基于改进Pasternak地基模型的桩柱式桥墩受力变形分析[J]. 岩土工程学报, 2022, 44(10): 1817-1826. doi: 10.11779/CJGE202210007

    ZHANG Ling, YUE Shao, ZHAO Minghua, et al. Behaviors of pile-column piers based on modified pasternak foundation model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1817-1826. (in Chinese) doi: 10.11779/CJGE202210007
    [16]
    冯国辉, 窦炳珺, 黄展军, 等. 盾构开挖引起邻近桩基水平位移的简化计算方法[J]. 湖南大学学报(自然科学版), 2022, 49(9): 136-144.

    FENG Guohui, DOU Bingjun, HUANG Zhanjun, et al. Simplified calculation method for lateral displacement of adjacent pile due to tunneling[J]. Journal of Hunan University (Natural Sciences), 2022, 49(9): 136-144. (in Chinese)
    [17]
    范秀江, 冯国辉, 薛芬芬, 等. 盾构开挖引起邻近单桩水平向变形解析研究[J]. 华东交通大学学报, 2023, 40(3): 17-23.

    FAN Xiujiang, FENG Guohui, XUE Fenfen, et al. Study of horizontal deformation of adjacent single pile foundation induced by tunneling[J]. Journal of East China Jiaotong University, 2023, 40(3): 17-23. (in Chinese)
    [18]
    LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
    [19]
    WANG C M, KITIPORNCHAI S, LIM C W, et al. Beam bending solutions based on nonlocal Timoshenko beam theory[J]. Journal of Engineering Mechanics, 2008, 134(6): 475-481.
    [20]
    ALBAS S D, ERSOY H, AKGÖZ B, et al. Dynamic analysis of a fiber-reinforced composite beam under a moving load by the ritz method[J]. Mathematics, 2021, 9(9): 1048.
    [21]
    ZHANG X L, XUE J Y, XU C S, et al. An analysis method for lateral capacity of pile foundation under existing vertical loads[J]. Soil Dynamics and Earthquake Engineering, 2021, 142(5): 106547.
    [22]
    VESIC A B. Bending of beam resting on isotropic elastic solid[J]. Journal of Engineering Mechanics Division, 1961, 87(2): 35-53.
    [23]
    KERR A D. On the determination of foundation model parameters[J]. Journal of Geotechnical Engineering, 1985, 111(11): 1334-1340.
    [24]
    CHENG C Y, DASARI G R, CHOW Y K, et al. Finite element analysis of tunnel-soil-pile interaction using displacement controlled model[J]. Tunnelling and Underground Space Technology, 2007, 22(4): 450-466.
    [25]
    ZHANG Z G, HUANG M S, XU C, et al. Simplified solution for tunnel-soil-pile interaction in Pasternak's foundation model[J]. Tunnelling and Underground Space Technology, 2018, 78(8): 146-158.
    [26]
    ZEEMAN E C. Catastrophe theory[J]. Scientific American, 1976, 234(4): 65-83.
    [27]
    ZEEMAN E C. Bifurcation, catastrophe, and turbulence[M]. New York: Springer New York, 1982.
  • Cited by

    Periodical cited type(5)

    1. 田晓丹,姜晓桢,殷友超,石泽译. 基于土工膜透声特性的膜下垫层渗透变形声波特征试验研究. 水利水电科技进展. 2025(02): 31-37 .
    2. 张宪雷,马仲阳,刘贺松. 高面膜堆石坝周边缝处PVC-P土工膜渗透机理. 岩土工程学报. 2024(11): 2333-2340 . 本站查看
    3. 张宪雷,马仲阳,吴云云. 面膜堆石坝不同品种土工膜力学特性. 岩土工程学报. 2023(05): 940-952 . 本站查看
    4. 徐国雷,张宪雷,马仲阳. 基于低场核磁共振技术面膜堆石坝中PVC膜渗透机理. 水电能源科学. 2022(12): 138-142 .
    5. 黄耀英,谢同,费大伟,包腾飞,颜剑. 基于测压管实测水位的王甫洲水利工程复合土工膜工作性态反馈. 岩土工程学报. 2021(03): 564-571 . 本站查看

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return