• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chong, LIU Xiaoqiang, HU Xuan, ZHANG Jing, PAN Yanfang, WEI Wei, JIANG Qinghui. Deformation mechanism and reinforcement treatment of right abutment high slope of Yebatan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 477-486. DOI: 10.11779/CJGE20231188
Citation: ZHANG Chong, LIU Xiaoqiang, HU Xuan, ZHANG Jing, PAN Yanfang, WEI Wei, JIANG Qinghui. Deformation mechanism and reinforcement treatment of right abutment high slope of Yebatan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 477-486. DOI: 10.11779/CJGE20231188

Deformation mechanism and reinforcement treatment of right abutment high slope of Yebatan Hydropower Station

More Information
  • Received Date: December 03, 2023
  • Available Online: October 17, 2024
  • Yebatan Hydropower Station is located in the complex geological zone at the edge of the Tibetan Plateau in the upper reaches of the Jinsha River. The slope in the junction area has large excavation height, strong unloading and complex geological conditions. After the excavation of the right abutment slope, more than 300 cracks appear in the slope surface and adits along f29, fr18, f85 and other faults. The deformation and cracking mechanism of the slope, the current stability of the slope after cracking and whether to take emergency reinforcement are the key technical problems that need to be answered at the construction stage of Yebatan Hydropower Station. In this study, the boundary conditions and failure modes of the right abutment slope are investigated by integrating a comprehensive method with the engineering geological condition analysis, monitoring data analysis, three-dimensional limit equilibrium analysis and numerical simulation. Under the influences of the combined factors of slope excavation and unloading, lagging support and seepage softening of construction water, the stability of the wedge-shaped blocks formed by the faults f29 and f85 decreases, resulting in the creeping deformation directed to the riverbed. The upstream and downstream boundaries controlling the overall stability of the slope are the faults f85 and f29, and the failure mode is wedge sliding. According to the normal and shear stress distribution on the sliding surfaces of the wedge block, the emergency reinforcement measures of anti-shear tunnels arranged along the faults of f29 and f85 are proposed, supplemented by engineering measures of anchor cables and drainage. The stability analysis results indicate that the emergency reinforcement measures can significantly increase the stability of the block, and the reinforced slope can meet the stability requirements. The research findings can be used as reference for the mechanism analysis and emergency reinforcement treatment of high rock slopes with similar deformation and cracking failure.
  • [1]
    黄润秋. 中国西南岩石高边坡的主要特征及其演化[J]. 地球科学进展, 2005, 20(3): 292-297. doi: 10.3321/j.issn:1001-8166.2005.03.005

    HUANG Runqiu. Main characteristics of hign rock slopes in southWestern China and their dynamic evolution[J]. Advances in Earth Science, 2005, 20(3): 292-297. (in Chinese) doi: 10.3321/j.issn:1001-8166.2005.03.005
    [2]
    宋胜武, 冯学敏, 向柏宇, 等. 西南水电高陡岩石边坡工程关键技术研究[J]. 岩石力学与工程学报, 2011, 30(1): 1-22.

    SONG Shengwu, FENG Xuemin, XIANG Baiyu, et al. Research on key technologies for high and steep rock slopes of hydropower engineering in Southwest China[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 1-22. (in Chinese)
    [3]
    马洪琪. 小湾水电站建设中的几个技术难题[J]. 水利发电, 2009, 35(9): 17-21.

    MA Hongqi. Technical difficulties in the construction of Xiaowan hydropower station[J]. Water Power, 2009, 35(9): 17-21. (in Chinese)
    [4]
    徐奴文, 李韬, 戴峰, 等. 基于离散元模拟和微震监测的白鹤滩水电站左岸岩质边坡稳定性分析[J]. 岩土力学, 2017, 38(8): 2358-2367.

    XU Nuwen, LI Tao, DAI Feng, et al. Stability analysis on the left bank slope of Baihetan hydropower station based on discrete element simulation and microseismic monitoring[J]. Rock and Soil Mechanics, 2017, 38(8): 2358-2367. (in Chinese)
    [5]
    李韬, 徐奴文, 戴峰, 等. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析[J]. 岩土力学, 2018, 39(2): 665-674.

    LI Tao, XU Nuwen, DAI Feng, et al. Stability analysis of left bank abutment slope at Baihetan hydropower station subjected to excavation[J]. Rock and Soil Mechanics, 2018, 39(2): 665-674. (in Chinese)
    [6]
    陈佳伟, 邓建辉, 魏进兵, 等. 长河坝水电站右坝肩边坡裂缝成因分析[J]. 岩石力学与工程学报, 2012, 31(6): 1121-1127. doi: 10.3969/j.issn.1000-6915.2012.06.005

    CHEN Jiawei, DENG Jianhui, WEI Jinbing, et al. Cause analysis of cracking in right abutment slope of changheba hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1121-1127. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.06.005
    [7]
    彭巨为. 长河坝水电站坝肩边坡动态监测及稳定性分析[J]. 地下空间与工程学报, 2017, 13(增刊2): 915-920.

    PENG Juwei. Dynamic monitoring and stability analysis on abutment slope of Changheba hydropower station[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(S2): 915-920. (in Chinese)
    [8]
    向柏宇, 姜清辉, 宋胜武, 等. 深埋混凝土抗剪结构加固设计方法及其在大型边坡工程治理中的应用[J]. 岩石力学与工程学报, 2012, 31(2): 289-302. doi: 10.3969/j.issn.1000-6915.2012.02.008

    XIANG Baiyu, JIANG Qinghui, SONG Shengwu, et al. Reinforcement design method for deep embedded concrete shear resistance structure and its application to large-scale engineering slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 289-302. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.02.008
    [9]
    商开卫, 张公平. 大岗山水电站右岸坝肩边坡深层加固研究[J]. 人民黄河, 2018, 40(1): 138-144. doi: 10.3969/j.issn.1000-1379.2018.01.033

    SHANG Kaiwei, ZHANG Gongping. Deep reinforcement study on right dam shoulder slope of dagangshan hydropower station[J]. Yellow River, 2018, 40(1): 138-144. (in Chinese) doi: 10.3969/j.issn.1000-1379.2018.01.033
    [10]
    MA K, LIU G Y, GUO L J, et al. Deformation and stability of a discontinuity-controlled rock slope at Dagangshan hydropower station using three-dimensional discontinuous deformation analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104313. doi: 10.1016/j.ijrmms.2020.104313
    [11]
    中国水电顾问集团成都勘测设计研究院. 金沙江叶巴滩水电站大坝工程标招标设计报告—4. 工程地质[R]. 成都: 中国水电顾问集团成都勘测设计研究院, 2017.

    Chengdu Hydropower Investigation and Design Institute, China Hydropower Consulting Group. Dam project tender design report of Yebatan hydropower project, Jinsha River, part 4: engineering geology[R]. Chengdu: Chengdu Hydropower Investigation and Design Institute, China Hydropower Consulting Group, 2017. (in Chinese)).
    [12]
    姜清辉, 王笑海, 丰定祥, 等. 三维边坡稳定性极限平衡分析系统软件SLOPE3D的设计及应用[J]. 岩石力学与工程学报, 2003, 22(7): 1121-1125. doi: 10.3321/j.issn:1000-6915.2003.07.014

    JIANG Qinghui, WANG Xiaohai, FENG Dingxiang, et al. SLOPE3D—a three-dimensional limit equilibrium analysis software for slope stability and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1121-1125. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.07.014
    [13]
    JIANG Q H, LIU X H, WEI W, et al. A new method for analyzing the stability of rock wedges[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 413-422. doi: 10.1016/j.ijrmms.2013.01.008
    [14]
    JIANG Q H, ZHOU C B. A rigorous solution for the stability of polyhedral rock blocks[J]. Computers and Geotechnics, 2017, 90: 190-201. doi: 10.1016/j.compgeo.2017.06.012
    [15]
    水电工程边坡设计规范: NB/T 10512—2021[S]. 北京: 中国水利水电出版社, 2021.

    Code for Slope Design of Hydropower Projects: NB/T 10512—2021[S]. Beijing: China Water & Power Press, 2021. (in Chinese)
  • Cited by

    Periodical cited type(18)

    1. 姚怡宁,宗桦,周璐,李荷,冯旭环. 川西大渡河干热河谷优势灌草植物根系特征及固土能力. 生态学报. 2025(06): 2798-2810 .
    2. 王铁行,赵翊豪,金鑫. 喷射秸秆加筋黄土的强度特性研究. 地下空间与工程学报. 2024(03): 800-811 .
    3. 陈婧逸,陈晓清,宋东日,吕明,蒋豪. 灌木根系形态对土体强度影响的大型直剪试验研究. 长江科学院院报. 2024(08): 120-127+163 .
    4. 程虎,李蒙,杨劭,张乃畅,李厚峰. 水陆交错带护坡植物固土抗蚀能力比较分析. 中国水土保持科学(中英文). 2024(03): 56-63 .
    5. 谭瑞琪,谢亚军,李欣然,姜宝莹,张桂荣. 植被防护岸坡加筋机理研究. 中国水运. 2023(06): 71-74 .
    6. 陈飞,谢蕴忠,王俊峰,张仕彬. 基于数值模拟方法的根系护坡研究进展. 科学技术与工程. 2023(16): 6728-6738 .
    7. 梅红,马柯,刘瑾,王禄艺,冯玉晗,齐梦瑶,胡梦园. 生态型稳定剂协同植物根系固土特性及机理研究. 水利水电科技进展. 2023(04): 52-58 .
    8. 蒋冬卫. 不同地区沿海港口物流业发展现状评价分析. 中国水运. 2023(11): 74-76 .
    9. 杜技能,王中珏,段继琪,王忠良,段青松. 生态护坡理论及技术研究现状综述. 水利与建筑工程学报. 2023(06): 211-220 .
    10. 徐华,袁海莉,王歆宇,王栋,陈建勋,荣才权. 根系形态和层次结构对根土复合体力学特性影响研究. 岩土工程学报. 2022(05): 926-935 . 本站查看
    11. 杨家庆,鲁明星,吴冠辰,袁雪涛,李富平,许永利,李小光. 矿山边坡植被修复研究现状及发展趋势分析. 矿山测量. 2022(01): 83-87 .
    12. 穆奎,潘伟良,王利彬,李婷,陈雅雯,丁奠元. 生态河道植物护坡工程技术研究现状与展望. 水利与建筑工程学报. 2022(03): 206-216 .
    13. 毕银丽,罗睿,王双明. 接菌对紫花苜蓿根系抗拉性及根菌复合土体抗剪强度影响. 煤炭学报. 2022(06): 2182-2192 .
    14. 黄琛,张友谊,叶小兵. 基于SEEP/W的强震区根系土坡面物源失稳机制分析. 科技通报. 2022(07): 57-66+72 .
    15. 李杰. 河道整治中根系植被特征对岸坡改良土影响试验研究. 水利技术监督. 2022(10): 129-132+177 .
    16. 梅红,胡国长,王禄艺,梅绪哲,刘瑾,徐佳俊,杨欣雅,杨诺. 边坡植被固土抗冲刷特性及其护坡机理研究. 河北工程大学学报(自然科学版). 2022(04): 86-91 .
    17. 姜彤,李龙飞,薛雷,黄坤,丁昊,王昊宇. 乔木护坡效果物理模型试验研究. 科学技术与工程. 2022(35): 15546-15553 .
    18. 陈飞,施康,钱乾,罗特. 根土复合体材料的抗剪强度特性研究进展. 有色金属科学与工程. 2021(06): 96-104 .

    Other cited types(20)

Catalog

    Article views (343) PDF downloads (100) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return