• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Zhongping, HOU Shanmeng, ZHANG Yiming, GAO Yuhao, LIU Xinrong. Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 759-768. DOI: 10.11779/CJGE20231109
Citation: YANG Zhongping, HOU Shanmeng, ZHANG Yiming, GAO Yuhao, LIU Xinrong. Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 759-768. DOI: 10.11779/CJGE20231109

Energy evolution and constitutive model for damage of degraded limestone under coupling effects of hydrodynamic-stress-chemical corrosion

More Information
  • Received Date: November 15, 2023
  • Available Online: November 13, 2024
  • The reservoir water level undergoes annual cyclical fluctuations, which leads to the state of hydrodynamic erosion of wetting-drying cycles of the bedrock in the hydro-fluctuation belt. In addition, the self-weight of the overlying rock mass also reduces the strength of the bedrock. To study the deterioration law of the rock mass under the coupling of hydrodynamic- stress-chemical corrosion, the degradation tests are conducted on limestone samples based on the field investigations. The law of energy evolution of limestone under the coupling of hydrodynamic-stress-chemical corrosion is elucidated, and the constitutive model for damage is proposed. The results show that according to the energy rate-strain curve, the rock failure process can be divided into five stages: compaction of vulnerable zone, microfracture closure, elastic deformation, microfracture extension, and post-peak failure. With the increase of the degradation stress, part of the dissipative energy is released in advance, and the strain at which the dissipated energy equals the elastic energy gradually decreases. The sensitivity of the total energy to the degradation stress increases with the increase of the wetting-drying cycles. The coupling mechanism of hydrodynamic-stress-chemical corrosion is revealed. The constitutive model for damage considering the deterioration of limestone at the compaction stage under the coupling of hydrodynamic-stress-chemical corrosion is proposed, which has higher prediction accuracy and can provide some theoretical guidance for disaster prediction and prevention in reservoir areas.
  • [1]
    闫国强, 殷跃平, 黄波林, 等. 三峡库区顺层灰岩岸坡劣化-溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.

    YAN Guoqiang, YIN Yueping, HUANG Bolin, et al. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2022, 43(9): 2568-2580. (in Chinese)
    [2]
    贺凯, 高杨, 殷跃平, 等. 基于岩体损伤的大型高陡危岩稳定性评价方法[J]. 水文地质工程地质, 2020, 47(4): 82-89.

    HE Kai, GAO Yang, YIN Yueping, et al. Stability assessment methods for huge high-steep unstable rock mass based on damage theory[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 82-89. (in Chinese)
    [3]
    李会中, 王团乐, 孙立华, 等. 三峡库区千将坪滑坡地质特征与成因机制分析[J]. 岩土力学, 2006, 27(增刊2): 1239-1244.

    LI Huizhong, WANG Tuanle, SUN Lihua, et al. Characteristics and mechanism of Qianjiangping Landslide in Three Gorges Reservoir Area[J]. Rock and Soil Mechanics, 2006, 27(S2): 1239-1244. (in Chinese)
    [4]
    HUANG B L, YIN Y P, LIU G N, et al. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, Three Gorges Reservoir, on November 23, 2008[J]. Landslides, 2012, 9(3): 395-405.
    [5]
    刘新荣, 景瑞, 缪露莉, 等. 巫山段消落带岸坡库岸再造模式及典型案例分析[J]. 岩石力学与工程学报, 2020, 39(7): 1321-1332.

    LIU Xinrong, JING Rui, MIAO Luli, et al. Reconstruction models and typical case analysis of the fluctuation belt of reservoir bank slopes in Wushan[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1321-1332. (in Chinese)
    [6]
    黄波林, 董星辰, 殷跃平, 等. 典型滑坡涌浪降能减浪试验研究[J]. 岩石力学与工程学报, 2024, 43(6): 1397-1405.

    HUANG Bolin, DONG Xingchen, YIN Yueping, et al. Experimental study on energy reduction and wave descent of typical landslide-induced impulse waves[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1397-1405. (in Chinese)
    [7]
    黄达, 匡希彬, 罗世林. 三峡库区藕塘滑坡变形特点及复活机制研究[J]. 水文地质工程地质, 2019, 46(5): 127-135.

    HUANG Da, KUANG Xibin, LUO Shilin. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 127-135. (in Chinese)
    [8]
    邓华锋, 齐豫, 李建林, 等. 水–岩作用下断续节理砂岩力学特性劣化机理[J]. 岩土工程学报, 2021, 43(4): 634-643. doi: 10.11779/CJGE202104005

    DENG Huafeng, QI Yu, LI Jianlin, et al. Degradation mechanism of intermittent jointed sandstone under water-rock interaction[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 634-643. (in Chinese) doi: 10.11779/CJGE202104005
    [9]
    朱建波, 付乙梓, 李瑞, 等. 干湿循环与动态压缩耦合作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2023, 42(增刊1): 3558-3566.

    (ZHU Jianbo, FU Yizi, LI Rui, et al. Experimental study on mechanical characteristics of sandstone under drying-wetting cycles and dynamic compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1): 3558-3566.
    [10]
    周昌台, 谢和平, 朱建波. 基于能量理论的岩石动态破坏准则[J]. 岩石力学与工程学报, 2023, 42(8): 1890-1898.

    ZHOU Changtai, XIE Heping, ZHU Jianbo. A dynamic strength criterion of rock materials based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(8): 1890-1898. (in Chinese)
    [11]
    BRUNING T, KARAKUS M, NGUYEN G D, et al. Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control[J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3321-3341.
    [12]
    赵志红, 金浩增, 郭建春, 等. 水化作用下深层页岩软化本构模型研究[J]. 岩石力学与工程学报, 2022, 41(增刊2): 3189-3197.

    ZHAO Zhihong, JIN Haozeng, GUO Jianchun, et al. Study on softening constitutive model of deep shale under hydration[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3189-3197. (in Chinese)
    [13]
    张超, 俞缙, 白允, 等. 基于强度理论的岩石脆延转化统计损伤本构模型[J]. 岩石力学与工程学报, 2023, 42(2): 307-316.

    ZHANG Chao, YU Jin, BAI Yun, et al. Statistical damage constitutive model of rock brittle-ductile transition based on strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 307-316. (in Chinese)
    [14]
    GARCIA-RIOS M, LUQUOT L, SOLER J M, et al. Influence of the flow rate on dissolution and precipitation features during percolation of CO2-rich sulfate solutions through fractured limestone samples[J]. Chemical Geology, 2015, 414: 95-108.
    [15]
    PARK H S, HWANG D, SEO J K. Metal artifact reduction for polychromatic X-ray CT based on a beam-hardening corrector[J]. IEEE Transactions on Medical Imaging, 2016, 35(2): 480-487.
    [16]
    ENGEL K J, SPIES L, VOGTMEIER G, et al. Impact of CT detector pixel-to-pixel crosstalk on image quality[C]// Medical Imaging 2006: Physics of Medical Imaging. San Diego, 2006.
    [17]
    黄达, 谭清, 黄润秋. 高应力强卸荷条件下大理岩损伤破裂的应变能转化过程机制研究[J]. 岩石力学与工程学报, 2012, 31(12): 2483-2493.

    HUANG Da, TAN Qing, HUANG Runqiu. Mechanism of strain energy conversion process for marble damage and fracture under high stress and rapid unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2483-2493. (in Chinese)
    [18]
    党志, 侯瑛. 玄武岩-水相互作用的溶解机理研究[J]. 岩石学报, 1995, 11(1): 9-15.

    DANG Zhi, HOU Ying. Experimental study on the dissolution kinetics of basalt-water interaction[J]. Acta Petrologica Sinica, 1995, 11(1): 9-15. (in Chinese)
    [19]
    LEMAITRE J. A course on Damage Mechanics[M]. Berlin: Springer, 1996.
    [20]
    傅晏. 干湿循环水岩相互作用下岩石劣化机理研究[D]. 重庆: 重庆大学, 2010.

    FU Yan. Study on the Mechanism of Rock Deterioration under the Interaction of Dry-Wet Circulating Water and Rock[D]. Chongqing: Chongqing University, 2010. (in Chinese)
    [21]
    WANG Z L, LI Y C, WANG J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences, 2007, 33(1): 1-9.
  • Cited by

    Periodical cited type(19)

    1. 彭俊皓,魏玉峰,李常虎,王群,李征征. 基于DBO-GRNN神经网络的冰水堆积物渗透系数预测. 人民长江. 2025(02): 167-174 .
    2. 张杰,黄勇. 长江漫滩区软土渗透系数计算方法对比分析. 中国煤炭地质. 2024(02): 37-42 .
    3. 王宇虓,杜广印,刘松玉,杨泳,周同和,徐金涛. 振杆密实法加固粗粒混合土模型试验. 工程科学与技术. 2024(03): 99-108 .
    4. 樊书抗,杨正权,朱凯斌,赵艺颖,刘小生,赵剑明. 土的级配特征与连续级配方程研究. 水利学报. 2024(05): 597-606 .
    5. 郭海,张安银. 基于PCA的长江漫滩软弱黏性土渗透特性研究. 江苏建筑. 2024(04): 102-105 .
    6. 赵桂锋,蒋明杰,张振,王天成,梅国雄. 粗粒土缩尺级配的渗透系数规律试验. 工程科学与技术. 2024(05): 240-246 .
    7. 李诗琪,杨忠平,刘浩宇,高宇豪,刘新荣. 考虑间断级配影响的土石混合体水力侵蚀分异机理. 土木工程学报. 2024(10): 125-134 .
    8. 付宏渊,杨海涛,吴二鲁,曾铃,钟涛,姜懿芸. 考虑炭质泥岩颗粒破碎的级配演化预测模型. 水利学报. 2024(09): 1058-1070 .
    9. 杨锴,杨奇,徐方,徐俏东,韩学良. 考虑细粒含量的单参数连续级配方程研究. 铁道科学与工程学报. 2024(12): 5094-5103 .
    10. 曲诗章,刘晓明,黎莉,陈仁朋. 基于双分形级配模型参数的粗粒土渗透系数计算公式. 岩土工程学报. 2023(01): 144-152 . 本站查看
    11. 侯龙清,袁晓铭,陈龙伟,李明东. 一种新型南55渗透仪研制及工程应用. 岩土工程学报. 2023(02): 419-425 . 本站查看
    12. 李浩,李春艳,张嵩,谢英美. 建筑工程中地质特征及岩土工程支护研究. 能源与环保. 2023(01): 181-186 .
    13. 赵贵章,孔令莹,徐远志,王淑丽,王展. 银川平原典型介质的颗粒级配对渗透系数的影响研究. 中国农村水利水电. 2023(04): 203-207 .
    14. 张福海,徐嘉成,薛浩宇,刘峥嵘. 级配分布对杂填土地基互嵌沉降影响的试验分析. 河南科学. 2023(05): 730-737 .
    15. 林玉祥,林浩东,莫品强,褚锋,庄培芝. 基于XGBoost的堆场软土渗透系数反演研究. 西安理工大学学报. 2023(01): 133-140 .
    16. 袁仕方,曹志翔,韩志洋,张玲洁. 藏东南粗粒土降雨入渗影响因素试验分析. 高原农业. 2022(02): 189-196 .
    17. 丁林楠,李国英,魏匡民. 描述土体级配分布的级配方程及其适用性. 岩土力学. 2022(S1): 173-183 .
    18. 段钊,袁林,毕银丽,王凯,吴延斌,张庆. 紫花苜蓿根系-黄土复合体剪切特性与库仑修正模型. 煤田地质与勘探. 2022(12): 85-95 .
    19. 骆莉莎,周昕,林军. 颗粒形态对粗粒土渗透系数影响的数值模拟研究. 湖南工业职业技术学院学报. 2021(01): 93-96 .

    Other cited types(16)

Catalog

    Article views (261) PDF downloads (67) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return