• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Zhaoming, CHEN Yonggui, WEN Zihao, FU Jun, ZHOU Han. Effects of pH on MICP curing of cadmium-contaminated tailings[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 38-47. DOI: 10.11779/CJGE20231051
Citation: JIANG Zhaoming, CHEN Yonggui, WEN Zihao, FU Jun, ZHOU Han. Effects of pH on MICP curing of cadmium-contaminated tailings[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 38-47. DOI: 10.11779/CJGE20231051

Effects of pH on MICP curing of cadmium-contaminated tailings

More Information
  • Received Date: October 24, 2023
  • Available Online: March 24, 2024
  • The microbial induced calcium carbonate precipitation (MICP) method is regarded as an environmentally sustainable approach for the solidification and remediation of contaminated soils. However, there are limited researches dedicated to understanding the impact of pH on the MICP treatment of heavy metals. In this study, the MICP remediation experiments involving cadmium (Cd) solution and Cd-contaminated tailings using Sporosarcina pasteurii ATCC 11859 at varying pH levels of 5, 7, 9, and 11 are conducted. The results indicate that in the aqueous solution tests, the effective immobilization of Cd2+ occurs across the pH range of 5 to 11. The optimal immobilization of Cd2+ is observed at a pH of 9. In contrast, during the consolidation and remediation tests on tailings, the introduction of acidic drenching solutions expedites the leaching of Cd2+ from the tailings. In this context, the MICP primarily transforms the acid-soluble fraction of Cd within the tailings into reducible and residual states. Importantly, the effectiveness of this passivation process exhibits a positive correlation with the rate of carbonate generation. The analytical characterization through FTIR, XRD, XPS and SEM-EDS of biomineralization precipitation offers insights into the mechanisms underlying the fixation of heavy metals by the MICP and the solidification of tailings. The MICP accomplishes the immobilization of heavy metal ions through a combination of biosorption and calcium carbonate adsorption, ion exchange and co-precipitation processes. Furthermore, the MICP enhances the friction angle of soil particles and promotes cohesion among them through coating, bonding and bridging effects.
  • [1]
    TIWARI N, SATYAM N, SHARMA M. Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method[J]. Scientific Reports, 2021, 11(1): 10324. doi: 10.1038/s41598-021-89687-2
    [2]
    KUMARI D, PAN X L, LEE D J, et al. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature[J]. International Biodeterioration & Biodegradation, 2014, 94: 98-102.
    [3]
    LIAO Z S, WU S J, XIE H, et al. Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: Mobilization or immobilization?[J]. Journal of Hazardous Materials, 2023, 443: 130242. doi: 10.1016/j.jhazmat.2022.130242
    [4]
    ZENG Y, CHEN Z Z, LYU Q Y, et al. Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge[J]. Journal of Hazardous Materials, 2023, 441: 129866. doi: 10.1016/j.jhazmat.2022.129866
    [5]
    LAUCHNOR E G, TOPP D M, PARKER A E, et al. Whole cell kinetics of ureolysis by Sporosarcina pasteurii[J]. Journal of Applied Microbiology, 2015, 118(6): 1321-1332. doi: 10.1111/jam.12804
    [6]
    YI H H, ZHENG T W, JIA Z R, et al. Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria[J]. Journal of Crystal Growth, 2021, 564: 126113. doi: 10.1016/j.jcrysgro.2021.126113
    [7]
    DONG Y R, GAO Z Q, WANG D, et al. Optimization of growth conditions and biological cementation effect of Sporosarcina pasteurii[J]. Construction and Building Materials, 2023, 395: 132288. doi: 10.1016/j.conbuildmat.2023.132288
    [8]
    ZEHNER J, RØYNE A, SIKORSKI P. Calcite seed-assisted microbial induced carbonate precipitation (MICP)[J]. PLoS One, 2021, 16(2): e0240763. doi: 10.1371/journal.pone.0240763
    [9]
    ZHAO Y, YAO J, YUAN Z M, et al. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation[J]. Environmental Science and Pollution Research International, 2017, 24(1): 372-380. doi: 10.1007/s11356-016-7810-y
    [10]
    SUN Y S, LV J G, TUO Y, et al. Experimental study on the influence of different factors on the mechanical properties of a soil-rock mixture solidified by micro-organisms[J]. Materials, 2022, 15(20): 7394. doi: 10.3390/ma15207394
    [11]
    TANG C S, YIN L Y, JIANG N J, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review[J]. Environmental Earth Sciences, 2020, 79(5): 94. doi: 10.1007/s12665-020-8840-9
    [12]
    LIU J, LI G, LI X A. Geotechnical engineering properties of soils solidified by microbially induced CaCO3 precipitation (MICP)[J]. Advances in Civil Engineering, 2021, 2021: 6683930. doi: 10.1155/2021/6683930
    [13]
    公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.

    Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
    [14]
    孙潇昊, 缪林昌, 童天志, 等. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944. doi: 10.11779/CJGE201805020

    SUN Xiaohao, MIAO Linchang, TONG Tianzhi, et al. Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. (in Chinese) doi: 10.11779/CJGE201805020
    [15]
    WU J Z, LI Z T, HUANG D, et al. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils[J]. Journal of Hazardous Materials, 2020, 387: 122010. doi: 10.1016/j.jhazmat.2019.122010
    [16]
    RATHI M, YOGALAKSHMI K N. Brevundimonas diminuta MYS6 associated Helianthus annuus L for enhanced copper phytoremediation[J]. Chemosphere, 2021, 263: 128195. doi: 10.1016/j.chemosphere.2020.128195
    [17]
    ALI A, LI M, SU J F, et al. Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd2+) and zinc (Zn2+) through calcium carbonate precipitation: Microscopic and spectroscopic investigations[J]. The Science of the Total Environment, 2022, 813: 152668. doi: 10.1016/j.scitotenv.2021.152668
    [18]
    FAN Y R, ZHENG C L, HUO A D, et al. Investigating the binding properties between antimony(V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy[J]. Ecotoxicology and Environmental Safety, 2019, 181: 34-42. doi: 10.1016/j.ecoenv.2019.05.076
    [19]
    ZHENG T W, QIAN C X. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Process Biochemistry, 2020, 91: 271-281. doi: 10.1016/j.procbio.2019.12.018
    [20]
    HAN L J, LI J S, XUE Q, et al. Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: a critical review[J]. Science of the Total Environment, 2020, 746: 140967. doi: 10.1016/j.scitotenv.2020.140967
    [21]
    FENG Z Y, ZHAO Y X, ZENG W L, et al. Using microbial carbonate precipitation to improve the properties of recycled fine aggregate and mortar[J]. Construction and Building Materials, 2020, 230: 116949. doi: 10.1016/j.conbuildmat.2019.116949
    [22]
    KEYKHA H A, ASADI A, ZAREIAN M. Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil[J]. Geomicrobiology Journal, 2017, 34(10): 889-894. doi: 10.1080/01490451.2017.1291772
    [23]
    ACHAL V, PAN X L, FU Q L, et al. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli[J]. Journal of Hazardous Materials, 2012, 201: 178-184.
    [24]
    CHONG K Y, CHIA C H, ZAKARIA S. Polymorphs calcium carbonate on temperature reaction[C]// AIP Conference Proceedings. Selangor, Malaysia. AIP Publishing LLC, 2014: 52-56.
    [25]
    QIAN X Y, FANG C L, HUANG M S, et al. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil[J]. Journal of Cleaner Production, 2017, 164: 198-208. doi: 10.1016/j.jclepro.2017.06.195
    [26]
    曾勇, 陈泽智, 杜亚玲, 等. 产脲酶菌株Sporosarcina ureilytica ML-2诱导方解石沉淀矿化Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅵ)研究[J]. 环境科学学报, 2022, 42(5): 148-159.

    ZENG Yong, CHEN Zezhi, DU Yaling, et al. The mineralization study of Pb(II), Cd(II) and Cr(VI) by induced calcite precipitation by urease producing strain Sporosarcina ureilytica ML-2[J]. Acta Scientiae Circumstantiae, 2022, 42(5): 148-159. (in Chinese)
    [27]
    ZHU X J, LI W L, ZHAN L, et al. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil[J]. Environmental Pollution, 2016, 219: 149-155. doi: 10.1016/j.envpol.2016.10.047
    [28]
    OLIVEIRA R C, HAMMER P, GUIBAL E, et al. Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp using SEM/EDX, FTIR, and XPS: Preliminary studies[J]. Chemical Engineering Journal, 2014, 239: 381-391. doi: 10.1016/j.cej.2013.11.042
    [29]
    WANG M L, WU S J, GUO J N, et al. Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite[J]. Journal of Hazardous Materials, 2019, 366: 684-693. doi: 10.1016/j.jhazmat.2018.12.049
    [30]
    MA L, PANG A P, LUO Y S, et al. Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii[J]. Microbial Cell Factories, 2020, 19(1): 12. doi: 10.1186/s12934-020-1281-z
    [31]
    SHENG M P, PENG D H, LUO S H, et al. Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation[J]. Environmental Pollution, 2022, 308: 119585. doi: 10.1016/j.envpol.2022.119585
    [32]
    HAN Y S, HADIKO G, FUJI M, et al. Crystallization and transformation of vaterite at controlled pH[J]. Journal of Crystal Growth, 2006, 289(1): 269-274. doi: 10.1016/j.jcrysgro.2005.11.011
    [33]
    成亮, 钱春香, 王瑞兴, 等. 碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J]. 化学学报, 2007, 65(19): 2133-2138. doi: 10.3321/j.issn:0567-7351.2007.19.008

    CHENG Liang, QIAN Chunxiang, WANG Ruixing, et al. Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J]. Acta chimica sinica, 2007, 65(19): 2133-2138. (in Chinese) doi: 10.3321/j.issn:0567-7351.2007.19.008
    [34]
    LÜ C, TANG C S, ZHU C, et al. Environmental dependence of microbially induced calcium carbonate crystal precipitations: experimental evidence and insights[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(7): 04022050. doi: 10.1061/(ASCE)GT.1943-5606.0002827
    [35]
    CHADA V G R, HAUSNER D B, STRONGIN D R, et al. Divalent Cd and Pb uptake on calcite{10ˉ14}cleavage faces: an XPS and AFM study[J]. Journal of Colloid and Interface Science, 2005, 288(2): 350-360. doi: 10.1016/j.jcis.2005.03.018
    [36]
    ZHOU X L, LIU W Z, ZHANG J, et al. Biogenic calcium carbonate with hierarchical organic-inorganic composite structure enhancing the removal of Pb(II) from wastewater[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35785-35793.
    [37]
    GODELITSAS A, ASTILLEROS J M, HALLAM K, et al. Interaction of calcium carbonates with lead in aqueous solutions[J]. Environmental Science & Technology, 2003, 37(15): 3351-3360.
    [38]
    DEJONG J, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029
    [39]
    DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
    [40]
    DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
    [41]
    CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
    [42]
    张茜, 叶为民, 刘樟荣, 等. 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43(2): 345-357.

    ZHANG Qian, YE Weimin, LIU Zhangrong, et al. Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43(2): 345-357. (in Chinese)
  • Related Articles

    [1]Time-varying reliability analysis of unsaturated reservoir bank slope under water level drop considering multi-parameter spatial variability[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230884
    [2]DENG Zhi-ping, LI Dian-qing, CAO Zi-jun, PHOON Kok Kwang. Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 986-995. DOI: 10.11779/CJGE201706003
    [3]JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. DOI: 10.11779/CJGE201403014
    [4]XUE Ya-dong, FANG Chao, GE Jia-cheng. Slope reliability in anisotropic random fields[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 77-82.
    [5]LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, PHOON Kok Kwang. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422.
    [6]SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916.
    [7]YANG Lingqiang, MA Jing, ZHANG Sherong. Reliability analysis of stability for slopes reinforced by anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302.
    [8]YAN Shuwang, ZHU Hongxia, LIU Run. Study on application of random field theory to reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2053-2059.
    [9]LIU Run, YAN Shuwang. Random field model and reliability analysis of foundation soil in Bohai gulf[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 464-467.
    [10]Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150.
  • Cited by

    Periodical cited type(8)

    1. 胡静静,余丁浩,李钢,王睿,张晗,苏璞. 考虑土-结相互作用的大型结构高效地震分析方法. 工程力学. 2024(03): 135-149 .
    2. 邓铭江,孙奔博,许佳. 高沥青混凝土心墙坝抗震安全评估研究进展. 水力发电学报. 2023(03): 82-91 .
    3. 刘京茂,邵伟峰,邹德高,屈永倩,迟福东. 基于弹塑性模型参数反演的高土石坝地震响应预测. 人民长江. 2023(09): 184-190+205 .
    4. 张亚国,肖书雄,杨赟,李同录. 一种状态变量相关的非饱和接触面弹塑性模型及验证. 岩土工程学报. 2023(10): 2081-2090 . 本站查看
    5. 左双英,付丽,陈世万,吴道勇. 基于Interface改进算法的水工隧洞衬砌受力分析. 华中科技大学学报(自然科学版). 2022(01): 99-104 .
    6. 王雅甜,杨春山,黄福杰. 紧邻既有结构的灌注桩施工力学行为研究. 南昌工程学院学报. 2022(03): 41-46 .
    7. 邹德高,彭俊,李俊超,陈涛,刘京茂,王建全,陈楷. 沥青混凝土面板堆石坝强震变形模式和极限抗震能力分析. 水电与抽水蓄能. 2022(06): 15-20 .
    8. 邹德高,刘京茂,汪玉冰,李俊超,李多,陈涛,王锋. 西部某水电站覆盖层地基离心机动力试验数值模拟. 水电与抽水蓄能. 2021(01): 23-27 .

    Other cited types(12)

Catalog

    Article views (492) PDF downloads (106) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return