Citation: | JIANG Zhaoming, CHEN Yonggui, WEN Zihao, FU Jun, ZHOU Han. Effects of pH on MICP curing of cadmium-contaminated tailings[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 38-47. DOI: 10.11779/CJGE20231051 |
[1] |
TIWARI N, SATYAM N, SHARMA M. Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method[J]. Scientific Reports, 2021, 11(1): 10324. doi: 10.1038/s41598-021-89687-2
|
[2] |
KUMARI D, PAN X L, LEE D J, et al. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature[J]. International Biodeterioration & Biodegradation, 2014, 94: 98-102.
|
[3] |
LIAO Z S, WU S J, XIE H, et al. Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: Mobilization or immobilization?[J]. Journal of Hazardous Materials, 2023, 443: 130242. doi: 10.1016/j.jhazmat.2022.130242
|
[4] |
ZENG Y, CHEN Z Z, LYU Q Y, et al. Microbiologically induced calcite precipitation for in situ stabilization of heavy metals contributes to land application of sewage sludge[J]. Journal of Hazardous Materials, 2023, 441: 129866. doi: 10.1016/j.jhazmat.2022.129866
|
[5] |
LAUCHNOR E G, TOPP D M, PARKER A E, et al. Whole cell kinetics of ureolysis by Sporosarcina pasteurii[J]. Journal of Applied Microbiology, 2015, 118(6): 1321-1332. doi: 10.1111/jam.12804
|
[6] |
YI H H, ZHENG T W, JIA Z R, et al. Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria[J]. Journal of Crystal Growth, 2021, 564: 126113. doi: 10.1016/j.jcrysgro.2021.126113
|
[7] |
DONG Y R, GAO Z Q, WANG D, et al. Optimization of growth conditions and biological cementation effect of Sporosarcina pasteurii[J]. Construction and Building Materials, 2023, 395: 132288. doi: 10.1016/j.conbuildmat.2023.132288
|
[8] |
ZEHNER J, RØYNE A, SIKORSKI P. Calcite seed-assisted microbial induced carbonate precipitation (MICP)[J]. PLoS One, 2021, 16(2): e0240763. doi: 10.1371/journal.pone.0240763
|
[9] |
ZHAO Y, YAO J, YUAN Z M, et al. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation[J]. Environmental Science and Pollution Research International, 2017, 24(1): 372-380. doi: 10.1007/s11356-016-7810-y
|
[10] |
SUN Y S, LV J G, TUO Y, et al. Experimental study on the influence of different factors on the mechanical properties of a soil-rock mixture solidified by micro-organisms[J]. Materials, 2022, 15(20): 7394. doi: 10.3390/ma15207394
|
[11] |
TANG C S, YIN L Y, JIANG N J, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review[J]. Environmental Earth Sciences, 2020, 79(5): 94. doi: 10.1007/s12665-020-8840-9
|
[12] |
LIU J, LI G, LI X A. Geotechnical engineering properties of soils solidified by microbially induced CaCO3 precipitation (MICP)[J]. Advances in Civil Engineering, 2021, 2021: 6683930. doi: 10.1155/2021/6683930
|
[13] |
公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.
Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
|
[14] |
孙潇昊, 缪林昌, 童天志, 等. 砂土微生物固化过程中尿素的影响研究[J]. 岩土工程学报, 2018, 40(5): 939-944. doi: 10.11779/CJGE201805020
SUN Xiaohao, MIAO Linchang, TONG Tianzhi, et al. Effect of methods of adding urea in culture media on sand solidification tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 939-944. (in Chinese) doi: 10.11779/CJGE201805020
|
[15] |
WU J Z, LI Z T, HUANG D, et al. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils[J]. Journal of Hazardous Materials, 2020, 387: 122010. doi: 10.1016/j.jhazmat.2019.122010
|
[16] |
RATHI M, YOGALAKSHMI K N. Brevundimonas diminuta MYS6 associated Helianthus annuus L for enhanced copper phytoremediation[J]. Chemosphere, 2021, 263: 128195. doi: 10.1016/j.chemosphere.2020.128195
|
[17] |
ALI A, LI M, SU J F, et al. Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd2+) and zinc (Zn2+) through calcium carbonate precipitation: Microscopic and spectroscopic investigations[J]. The Science of the Total Environment, 2022, 813: 152668. doi: 10.1016/j.scitotenv.2021.152668
|
[18] |
FAN Y R, ZHENG C L, HUO A D, et al. Investigating the binding properties between antimony(V) and dissolved organic matter (DOM) under different pH conditions during the soil sorption process using fluorescence and FTIR spectroscopy[J]. Ecotoxicology and Environmental Safety, 2019, 181: 34-42. doi: 10.1016/j.ecoenv.2019.05.076
|
[19] |
ZHENG T W, QIAN C X. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Process Biochemistry, 2020, 91: 271-281. doi: 10.1016/j.procbio.2019.12.018
|
[20] |
HAN L J, LI J S, XUE Q, et al. Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: a critical review[J]. Science of the Total Environment, 2020, 746: 140967. doi: 10.1016/j.scitotenv.2020.140967
|
[21] |
FENG Z Y, ZHAO Y X, ZENG W L, et al. Using microbial carbonate precipitation to improve the properties of recycled fine aggregate and mortar[J]. Construction and Building Materials, 2020, 230: 116949. doi: 10.1016/j.conbuildmat.2019.116949
|
[22] |
KEYKHA H A, ASADI A, ZAREIAN M. Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil[J]. Geomicrobiology Journal, 2017, 34(10): 889-894. doi: 10.1080/01490451.2017.1291772
|
[23] |
ACHAL V, PAN X L, FU Q L, et al. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli[J]. Journal of Hazardous Materials, 2012, 201: 178-184.
|
[24] |
CHONG K Y, CHIA C H, ZAKARIA S. Polymorphs calcium carbonate on temperature reaction[C]// AIP Conference Proceedings. Selangor, Malaysia. AIP Publishing LLC, 2014: 52-56.
|
[25] |
QIAN X Y, FANG C L, HUANG M S, et al. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil[J]. Journal of Cleaner Production, 2017, 164: 198-208. doi: 10.1016/j.jclepro.2017.06.195
|
[26] |
曾勇, 陈泽智, 杜亚玲, 等. 产脲酶菌株Sporosarcina ureilytica ML-2诱导方解石沉淀矿化Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅵ)研究[J]. 环境科学学报, 2022, 42(5): 148-159.
ZENG Yong, CHEN Zezhi, DU Yaling, et al. The mineralization study of Pb(II), Cd(II) and Cr(VI) by induced calcite precipitation by urease producing strain Sporosarcina ureilytica ML-2[J]. Acta Scientiae Circumstantiae, 2022, 42(5): 148-159. (in Chinese)
|
[27] |
ZHU X J, LI W L, ZHAN L, et al. The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil[J]. Environmental Pollution, 2016, 219: 149-155. doi: 10.1016/j.envpol.2016.10.047
|
[28] |
OLIVEIRA R C, HAMMER P, GUIBAL E, et al. Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp using SEM/EDX, FTIR, and XPS: Preliminary studies[J]. Chemical Engineering Journal, 2014, 239: 381-391. doi: 10.1016/j.cej.2013.11.042
|
[29] |
WANG M L, WU S J, GUO J N, et al. Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite[J]. Journal of Hazardous Materials, 2019, 366: 684-693. doi: 10.1016/j.jhazmat.2018.12.049
|
[30] |
MA L, PANG A P, LUO Y S, et al. Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii[J]. Microbial Cell Factories, 2020, 19(1): 12. doi: 10.1186/s12934-020-1281-z
|
[31] |
SHENG M P, PENG D H, LUO S H, et al. Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation[J]. Environmental Pollution, 2022, 308: 119585. doi: 10.1016/j.envpol.2022.119585
|
[32] |
HAN Y S, HADIKO G, FUJI M, et al. Crystallization and transformation of vaterite at controlled pH[J]. Journal of Crystal Growth, 2006, 289(1): 269-274. doi: 10.1016/j.jcrysgro.2005.11.011
|
[33] |
成亮, 钱春香, 王瑞兴, 等. 碳酸岩矿化菌诱导碳酸钙晶体形成机理研究[J]. 化学学报, 2007, 65(19): 2133-2138. doi: 10.3321/j.issn:0567-7351.2007.19.008
CHENG Liang, QIAN Chunxiang, WANG Ruixing, et al. Study on the mechanism of calcium carbonate formation induced by carbonate-mineralization microbe[J]. Acta chimica sinica, 2007, 65(19): 2133-2138. (in Chinese) doi: 10.3321/j.issn:0567-7351.2007.19.008
|
[34] |
LÜ C, TANG C S, ZHU C, et al. Environmental dependence of microbially induced calcium carbonate crystal precipitations: experimental evidence and insights[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(7): 04022050. doi: 10.1061/(ASCE)GT.1943-5606.0002827
|
[35] |
CHADA V G R, HAUSNER D B, STRONGIN D R, et al. Divalent Cd and Pb uptake on calcite{10ˉ14}cleavage faces: an XPS and AFM study[J]. Journal of Colloid and Interface Science, 2005, 288(2): 350-360. doi: 10.1016/j.jcis.2005.03.018
|
[36] |
ZHOU X L, LIU W Z, ZHANG J, et al. Biogenic calcium carbonate with hierarchical organic-inorganic composite structure enhancing the removal of Pb(II) from wastewater[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35785-35793.
|
[37] |
GODELITSAS A, ASTILLEROS J M, HALLAM K, et al. Interaction of calcium carbonates with lead in aqueous solutions[J]. Environmental Science & Technology, 2003, 37(15): 3351-3360.
|
[38] |
DEJONG J, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029
|
[39] |
DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
|
[40] |
DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
|
[41] |
CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
|
[42] |
张茜, 叶为民, 刘樟荣, 等. 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学, 2022, 43(2): 345-357.
ZHANG Qian, YE Weimin, LIU Zhangrong, et al. Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43(2): 345-357. (in Chinese)
|
[1] | Time-varying reliability analysis of unsaturated reservoir bank slope under water level drop considering multi-parameter spatial variability[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230884 |
[2] | DENG Zhi-ping, LI Dian-qing, CAO Zi-jun, PHOON Kok Kwang. Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 986-995. DOI: 10.11779/CJGE201706003 |
[3] | JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. DOI: 10.11779/CJGE201403014 |
[4] | XUE Ya-dong, FANG Chao, GE Jia-cheng. Slope reliability in anisotropic random fields[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 77-82. |
[5] | LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, PHOON Kok Kwang. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. |
[6] | SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916. |
[7] | YANG Lingqiang, MA Jing, ZHANG Sherong. Reliability analysis of stability for slopes reinforced by anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302. |
[8] | YAN Shuwang, ZHU Hongxia, LIU Run. Study on application of random field theory to reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2053-2059. |
[9] | LIU Run, YAN Shuwang. Random field model and reliability analysis of foundation soil in Bohai gulf[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 464-467. |
[10] | Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150. |
1. |
胡静静,余丁浩,李钢,王睿,张晗,苏璞. 考虑土-结相互作用的大型结构高效地震分析方法. 工程力学. 2024(03): 135-149 .
![]() | |
2. |
邓铭江,孙奔博,许佳. 高沥青混凝土心墙坝抗震安全评估研究进展. 水力发电学报. 2023(03): 82-91 .
![]() | |
3. |
刘京茂,邵伟峰,邹德高,屈永倩,迟福东. 基于弹塑性模型参数反演的高土石坝地震响应预测. 人民长江. 2023(09): 184-190+205 .
![]() | |
4. |
张亚国,肖书雄,杨赟,李同录. 一种状态变量相关的非饱和接触面弹塑性模型及验证. 岩土工程学报. 2023(10): 2081-2090 .
![]() | |
5. |
左双英,付丽,陈世万,吴道勇. 基于Interface改进算法的水工隧洞衬砌受力分析. 华中科技大学学报(自然科学版). 2022(01): 99-104 .
![]() | |
6. |
王雅甜,杨春山,黄福杰. 紧邻既有结构的灌注桩施工力学行为研究. 南昌工程学院学报. 2022(03): 41-46 .
![]() | |
7. |
邹德高,彭俊,李俊超,陈涛,刘京茂,王建全,陈楷. 沥青混凝土面板堆石坝强震变形模式和极限抗震能力分析. 水电与抽水蓄能. 2022(06): 15-20 .
![]() | |
8. |
邹德高,刘京茂,汪玉冰,李俊超,李多,陈涛,王锋. 西部某水电站覆盖层地基离心机动力试验数值模拟. 水电与抽水蓄能. 2021(01): 23-27 .
![]() |