Citation: | XU Xiaofeng, CHEN Shaolin, SUN Jie. Zonal coupling analysis method for seismic response of offshore monopole wind turbine[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 96-105. DOI: 10.11779/CJGE20231025 |
[1] |
王剑, 李响, 韩雪, 等. 中国近海风能资源时空分布特征分析[J]. 海洋预报, 2022, 39(6): 55-61.
WANG Jian, LI Xiang, HAN Xue, et al. Analysis of spatiotemporal distribution characteristics of offshore wind energy resources in China[J]. Marine Forecasts, 2022, 39(6): 55-61. (in Chinese)
|
[2] |
李小军, 李娜, 陈苏. 中国海域地震区划及关键问题研究[J]. 震灾防御技术, 2021, 16(1): 1-10.
LI Xiaojun, LI Na, CHEN Su. Study on seismic zoning in china sea area and its key issues[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 1-10. (in Chinese)
|
[3] |
THOMSON W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2): 89-93. doi: 10.1063/1.1699629
|
[4] |
王彦臻, 范宏飞, 赵凯, 等. 深厚复杂海峡场地二维非线性地震反应特性[J]. 岩土工程学报, 2024, 46(2): 345-356. doi: 10.11779/CJGE20221307
WANG Yanzheng, FAN Hongfei, ZHAO Kai, et al. 2D nonlinear seismic response characteristics of a strait site with deep inhomogeneous soil deposits[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 345-356. (in Chinese) doi: 10.11779/CJGE20221307
|
[5] |
SONG Z, WANG F, LI Y, et al. Nonlinear seismic responses of the powerhouse of a hydropower station under near-fault plane P-wave oblique incidence[J]. Engineering Structures, 199, 109613.
|
[6] |
杜修力, 李洋, 赵密, 等. 下卧刚性基岩条件下场地土-结构体系地震反应分析方法研究[J]. 工程力学, 2017, 34(5): 52-59.
DU Xiuli, LI Yang, ZHAO Mi, et al. Seismic response analysis method for soil-structure interaction system of underlying rigid rock base soil condition[J]. Engineering Mechanics, 2017, 34(5): 52-59. (in Chinese)
|
[7] |
廖振鹏, 黄孔亮, 杨柏坡, 等. 暂态波透射边界[J]. 中国科学A辑, 1984, 14(6): 556-564.
LIAO Zhenpeng, HUANG Konglang, YANG Baipo. et al. Transient wave transmission boundary[J]. Chinese Science (Series A), 1984, 14(6): 556-564. (in Chinese)
|
[8] |
LYSMER J, KUHLEMEYERR L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, 1969, 95(4): 859-877. doi: 10.1061/JMCEA3.0001144
|
[9] |
王展, 景立平, 陆新宇, 等. 黏弹性人工边界单元及地震动输入方法比较研究[J]. 世界地震工程, 2023, 39(2): 167-177.
WANG Zhan, JING Liping, LU Xinyu, et al. Comparative study of viscous-spring boundary element and methods of seismic motion input[J]. World Earthquake Engineering, 2023, 39(2): 167-177. (in Chinese)
|
[10] |
冯玉涛, 戎进章, 曹芳, 等. 动水及桩-土-结构相互作用对跨江大桥稳定性的地震影响分析[J]. 岩石力学与工程学报, 2006(增刊1): 2713-2718.
FENG Yutao, RONG Jinzhang, CAO Fang, et al. Seismic response analysis of hydrodynamic and pile-soil-structure interaction for river-spanning bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(S1): 2713-2718. (in Chinese)
|
[11] |
魏凯, 袁万城. 深水高桩承台基础地震动水效应数值解析混合算法[J]. 同济大学学报: 自然科学版, 2013(3): 336-341.
WEI Kai, YUAN Wancheng. A numerical-analytical mixed method of hydrodynamic effect for deep-water elevated pile cap foundation under earthquake[J]. Journal of Tongji University: Natural Science, 2013(3): 336-341. (in Chinese)
|
[12] |
ZUO H R, BI K M, HAO H. Dynamic analyses of operating offshore wind turbines including soil-structure interaction[J]. Engineering Structures, 2018, 157: 42-62. doi: 10.1016/j.engstruct.2017.12.001
|
[13] |
HACIEFENDIOGLU K. Stochastic seismic response analysis of offshore wind turbine including fluid structure-soil interaction[J]. The Structural Design of Tall and Special Buildings, 2012, 21(12): 867-878. doi: 10.1002/tal.646
|
[14] |
LEE S G, KIM D H, YOON G L. Seismic fragility for 5 MW offshore wind turbine using pushover analysis[J]. Journal of Ocean Engineering and Technology, 2013, 27(4): 98-106. doi: 10.5574/KSOE.2013.27.4.098
|
[15] |
KIM D H, LEE S G, LEE I K. Seismic fragility analysis of 5 MW offshore wind turbine[J]. Renewable Energy, 2014, 65: 250-256. doi: 10.1016/j.renene.2013.09.023
|
[16] |
FRANCESCA T, MARCO S, LISANNE M. A practical soil-structure interaction model for a wind turbine subjected to seismic loads and emergency shutdown[J]. Procedia Engineering, 2017(199): 2433-2438.
|
[17] |
YANG Y, YE K, LI C, et al. Dynamic behavior of wind turbines influenced by aerodynamic damping and earthquake intensity[J]. Wind Energy, 2018, 21(5): 303-319. doi: 10.1002/we.2163
|
[18] |
WANG P, ZHAO M, DU X, et al. Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 47-57. doi: 10.1016/j.soildyn.2018.04.028
|
[19] |
陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报, 2019, 51(2): 594-606.
CHEN Shaolin, KE Xiaofei, ZHANG Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606. (in Chinese)
|
[20] |
陈少林, 程书林, 柯小飞. 海洋地震工程流固耦合问题的统一计算框架-不规则界面情形[J]. 力学学报, 2019, 51(5): 1517-1529.
CHEN Shaolin, CHENG Shulin, KE Xiaofei. A unified computational framework for fluid-solid coupling in marine earthquake engineering: irregular interface case[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529. (in Chinese)
|
[21] |
ZHAO M, GAO Z, WANG P, et al. Response spectrum method for seismic analysis of monopile offshore wind turbine[J]. Soil Dynamics and Earthquake Engineering, 2020, 136.
|
[22] |
海上固定平台规划、设计和推荐作法—荷载抗力系数设计法(增补1)[S]: SY/T10009—2002.2002.
Planning, Design and Recommended Practices for Offshore Fixed Platforms—Load Resistance Coefficient Design Method (Addendum 1): SY/T10009-2002[S]. 2002. (in Chinese)
|
[1] | High-performance Solid-fluid Coupled Simulation Method for Geotechnical Engineering[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240382 |
[2] | XIE Qiang, CHEN Yucheng, FU Xiang, TIAN Dalang, BAN Yuxin, XU Dongdong. Fluid-solid coupling model for discontinuous deformation analysis of unsaturated transient seepage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 299-306. DOI: 10.11779/CJGE20221026 |
[3] | AN Yijing, HAN Pengju, QIN Jiandong, BAI Xiangling, HE Bin, WANG Xiaoyuan. Seismic response analysis of leaning Wenfeng Pagoda considering soil-structure interaction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 201-207. DOI: 10.11779/CJGE2023S20028 |
[4] | GUO Hong-yan, JI Ya-ying, FANG Lin, LI Ke, TANG Cheng-ping, WANG Shi-fa. External water pressures and limited emission standards of water-rich tunnels based on fluid-solid coupling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 165-168. DOI: 10.11779/CJGE2019S1042 |
[5] | WANG Jian-ning, DOU Yuan-ming, ZHUANG Hai-yang, FU Ji-sai, MA Guo-wei. Seismic responses of dynamic interaction system of soil-diaphragm wall-complicated unequal-span subway station[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1235-1243. DOI: 10.11779/CJGE201907007 |
[6] | QIN Hong-jun, CHEN Song. FEM analysis of nonlinear mechanical behavior of fluid-solid coupling for soft clay foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 256-260. DOI: 10.11779/CJGE2017S1051 |
[7] | WU Yong-kang, WANG Xiang-nan, DONG Wei-xin, YU Yu-zhen. Dynamic analyses of a high earth-rockfill dam considering effects of solid-fluid coupling[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2007-2013. DOI: 10.11779/CJGE201511010 |
[8] | LIU Jing, CHEN Jin-jian, WANG Jian-hua. Fluid-solid coupling analysis of multi-grade dewatering in Hongqiao transport hub[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 210-215. |
[9] | LIANG Yue, CHEN Liang, CHEN Jian-sheng. Mathematical model for piping development considering fluid-solid interaction[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1265-1270. |
[10] | Xu Zenghe, Xu Xiaohe. Fluid-solid coupling problem in the liquid extraction at fixed flux[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 737-741. |