• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TU Bingxiong, WEI Jian, JIA Jinqin, YU Jin, LI Zhiwe, CAI Qipeng. Anchorage performance of new tension-compression anchor Ⅳ: numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2642-2651. DOI: 10.11779/CJGE20231016
Citation: TU Bingxiong, WEI Jian, JIA Jinqin, YU Jin, LI Zhiwe, CAI Qipeng. Anchorage performance of new tension-compression anchor Ⅳ: numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2642-2651. DOI: 10.11779/CJGE20231016

Anchorage performance of new tension-compression anchor Ⅳ: numerical simulation

More Information
  • Received Date: October 15, 2023
  • Available Online: June 12, 2024
  • The new tension-compression anchor (TC anchor) has excellent anchorage performance and obvious advantages in anti-floating engineering, gradually gaining widespread application. However, its load transfer mechanism has been not yet clearly understood. In light of this, a study on the load transfer mechanism of the TC anchor is conducted based on the completed field tests through the numerical simulation method. The results indicate that the axial tension in the rebar of the TC-anchor remains constant in the compression anchorage segment but significantly decreases after transferring to the tension anchorage segment. During failure, the tension bearing coefficient of the TC anchor is slightly lower than the tension length coefficient. In the compression anchorage segment, the grouting materials experience compression, with the compressive stress decreasing towards the head. In the tension anchorage segment, the grouting materials experience tension, and the tensile stress increases first and then decreases, and the maximum tensile stress is significantly lower than that of the wholly grouted anchor. Optimizing the tension-compression length ratio can further reduce the axial tensile stress in the grouting materials of the tension anchorage segment. The shear stress at the grout-soil interface of the TC anchor is the highest at the load-bearing body and decreases towards both sides. Compared to the wholly grouted anchor and pressure-type anchor under the same tension, the TC anchor exhibits significantly reduced shear stress at the grout-soil interface, weakened stress concentration, and a more uniform distribution.
  • [1]
    贾金青, 郑卫锋. 预应力锚杆柔性支护法的研究与应用[J]. 岩土工程学报, 2005, 27(11): 1257-1261. http://cge.nhri.cn/article/id/11829

    JIA Jinqing, ZHENG Weifeng. Study and application of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1257-1261. (in Chinese) http://cge.nhri.cn/article/id/11829
    [2]
    朱彦鹏, 侯喜楠, 马响响, 等. 框架预应力锚杆支护边坡稳定性极限分析[J]. 岩土工程学报, 2021, 43(增刊1): 7-12. doi: 10.11779/CJGE2021S1002

    ZHU Yanpeng, HOU Xinan, MA Xiangxiang, et al. Limit analysis of slope stability supported by framed prestressed anchor rods[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 7-12. (in Chinese) doi: 10.11779/CJGE2021S1002
    [3]
    柳建国, 吴平, 尹华刚, 等. 压力分散型抗浮锚杆技术及其工程应用[J]. 岩石力学与工程学报, 2005, 24(21): 3948-3953.

    LIU Jianguo, WU Ping, YIN Huagang, et al. Pressure-dispersive anti-float anchor technique and its application to engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(21): 3948-3953. (in Chinese)
    [4]
    刘钟, 郭钢, 张义, 等. 囊式扩体锚杆施工技术与工程应用[J]. 岩土工程学报, 2014, 36(增刊2): 205-211. doi: 10.11779/CJGE2014S2034

    LIU Zhong, GUO Gang, ZHANG Yi, et al. Construction technology and engineering applications of capsule-type under-reamed ground anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 205-211. (in Chinese) doi: 10.11779/CJGE2014S2034
    [5]
    涂兵雄, 蔡燕燕, 何锦芳, 等. 新型拉压复合型锚杆锚固性能研究Ⅲ: 现场试验[J]. 岩土工程学报, 2019, 41(5): 846-854. doi: 10.11779/CJGE201905007

    TU Bingxiong, CAI Yanyan, HE Jinfang, et al. Analysis of anchorage performance on new tension-compression anchor Ⅲ field test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 846-854. (in Chinese) doi: 10.11779/CJGE201905007
    [6]
    尤春安. 全长黏结式锚杆的受力分析[J]. 岩石力学与工程学报, 2000, 19(3): 339-341.

    YOU Chunan. Analysis on bolt strain with large deformation under shearing-tensile load[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 339-341. (in Chinese)
    [7]
    黄明华, 周智, 欧进萍. 拉力型锚杆锚固段拉拔受力的非线性全历程分析[J]. 岩石力学与工程学报, 2014, 33(11): 2190-2199.

    HUANG Minghua, ZHOU Zhi, OU Jinping. Nonlinear full-range analysis of load transfer in fixed segment of tensile anchors[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2190-2199. (in Chinese)
    [8]
    何思明, 李新坡. 预应力锚杆作用机制研究[J]. 岩石力学与工程学报, 2006, 25(9): 1876-1880.

    HE Siming, LI Xinpo. Study on mechanism of prestressed anchor bolt[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1876-1880. (in Chinese)
    [9]
    叶观宝, 何志宇, 高彦斌, 等. 压力分散型锚索锚固段荷载分布特征的现场试验研究[J]. 岩土力学, 2011, 32(12): 3561-3565.

    YE Guanbao, HE Zhiyu, GAO Yanbin, et al. Field test study of load distribution of anchoring section of pressure dispersed anchor cables[J]. Rock and Soil Mechanics, 2011, 32(12): 3561-3565. (in Chinese)
    [10]
    刘永权, 刘新荣, 杨忠平, 等. 不同类型预应力锚索锚固性能现场试验对比研究[J]. 岩石力学与工程学报, 2016, 35(2): 275-283.

    LIU Yongquan, LIU Xinrong, YANG Zhongping, et al. Field test on anchorage performance of different types of prestressed cables[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 275-283. (in Chinese)
    [11]
    江文武, 徐国元, 马长年. FLAC_3D的锚杆拉拔数值模拟试验[J]. 哈尔滨工业大学学报, 2009, 41(10): 129-133.

    JIANG Wenwu, XU Guoyuan, MA Changnian. Numerical simulation on pull-tests of a cable by FLAC_3D[J]. Journal of Harbin Institute of Technology, 2009, 41(10): 129-133. (in Chinese)
    [12]
    任非凡, 徐超, 谌文武. 多界面复合锚杆荷载传递机制的数值模拟[J]. 同济大学学报(自然科学版), 2011, 39(12): 1753-1759.

    REN Feifan, XU Chao, CHEN Wenwu. Numerical simulation on load transfer mechanism of multi-interface composite rockbolt[J]. Journal of Tongji University (Natural Science), 2011, 39(12): 1753-1759. (in Chinese)
    [13]
    MA S Q, ZHAO Z Y, NIE W, et al. A numerical model of fully grouted bolts considering the tri-linear shear bond–slip model[J]. Tunnelling and Underground Space Technology, 2016, 54: 73-80.
    [14]
    郭金刚, 李耀晖, 何富连, 等. 基于残余剪切强度的全长黏结锚杆拉拔模拟[J]. 岩土力学, 2021, 42(11): 2953-2960.

    GUO Jingang, LI Yaohui, HE Fulian, et al. Pullout simulation on fully grouted rock bolts based on residual shear strength[J]. Rock and Soil Mechanics, 2021, 42(11): 2953-2960. (in Chinese)
    [15]
    赵同彬, 尹延春, 谭云亮, 等. 锚杆界面力学试验及剪应力传递规律细观模拟分析[J]. 采矿与安全工程学报, 2011, 28(2): 220-224.

    ZHAO Tongbin, YIN Yanchun, TAN Yunliang, et al. Mechanical test of bolt interface and microscopic simulation of transfer law for shear stress[J]. Journal of Mining & Safety Engineering, 2011, 28(2): 220-224. (in Chinese)
    [16]
    建筑工程抗浮技术标准: JGJ 476—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Technical Standard for Building Engineering Against Uplift: JGJ 476—2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [17]
    陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2013.

    CHEN Yumin, XU Dingping. FLAC/FLAC3D Foundation and Engineering Example[M]. 2nd Ed. Beijing: China Water & Power Press, 2013. (in Chinese)
  • Cited by

    Periodical cited type(1)

    1. 赵飞涛. 基于锚固界面力学特性的拉压型锚杆承载特性研究. 长沙理工大学学报(自然科学版). 2025(02): 99-109 .

    Other cited types(0)

Catalog

    Article views (664) PDF downloads (144) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return