Citation: | ZHANG Wenjie, JIN Dian, GUO Xingzhang, LI Xibin. Experimental study on solidification/stabilization of Cr(Ⅵ)-contaminated soil by alkali-activated ground granulated blast furnace slag[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 57-64. DOI: 10.11779/CJGE20230991 |
[1] |
MA G J, GARBERS-CRAIG A M. Stabilisation of Cr(Ⅵ) in stainless steel plant dust through sintering using silica-rich clay[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 210-216.
|
[2] |
WANG S, VIPULANANDAN C. Solidification/stabilization of Cr(Ⅵ) with cement Leachability and XRD analyses[J]. Cement and Concrete Research, 2000, 30(3): 385-389. doi: 10.1016/S0008-8846(99)00265-3
|
[3] |
杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124.
DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese)
|
[4] |
查甫生, 许龙, 崔可锐. 水泥固化重金属污染土的强度特性试验研究[J]. 岩土力学, 2012, 33(3): 652-656, 664.
ZHA Fusheng, XU Long, CUI Kerui. Strength characteristics of heavy metal contaminated soils stabilized/solidified by cement[J]. Rock and Soil Mechanics, 2012, 33(3): 652-656, 664. (in Chinese)
|
[5] |
张文, 杨勇, 马泉智, 等. 铬污染土壤还原-固化稳定化过程研究[J]. 环境工程, 2014, 32(增刊1): 1028-1030.
ZHANG Wen, YANG Yong, MA Quanzhi, et al. Research on reduction and solidification/stabilization process of chromium contaminated soil[J]. Environmental Engineering, 2014, 32(S1): 1028-1030. (in Chinese)
|
[6] |
BULUT U, OZVERDI A, ERDEM M. Leaching behavior of pollutants in ferrochrome arc furnace dust and its stabilization/solidification using ferrous sulphate and Portland cement[J]. Journal of Hazardous Materials, 2009, 162(2/3): 893-898.
|
[7] |
薄煜琳. 粒化高炉矿渣和氧化镁固化稳定化铅污染粘土的强度、溶出及微观特性的研究[D]. 南京: 东南大学, 2015.
BO Yulin. Study on Strength, Dissolution and Microscopic Characteristics of Lead-Contaminated Clay Stabilized by Granulated Blast Furnace Slag and Magnesium Oxide[D]. Nanjing: Southeast University, 2015. (in Chinese)
|
[8] |
GOODARZI A R, MOVAHEDRAD M. Stabilization/solidification of zinc-contaminated Kaolin clay using ground granulated blast-furnace slag and different types of activators[J]. Applied Geochemistry, 2017, 81: 155-165. doi: 10.1016/j.apgeochem.2017.04.014
|
[9] |
朱效宏. 高效减水剂与电气石粉协同作用对碱矿渣胶结材浆体性能影响研究[D]. 重庆: 重庆大学, 2017.
ZHU Xiaohong. Study on the Synergistic Effect of Superplasticizer and Tourmaline Powder on the Properties of Alkali Slag Cement Paste[D]. Chongqing: Chongqing University, 2017. (in Chinese)
|
[10] |
伍浩良, 薄煜琳, 杜延军, 等. 碱激发高炉矿渣固化铅污染土酸缓能力, 强度及微观特性研究[J]. 岩土工程学报, 2019, 41(增刊1): 137-140. doi: 10.11779/CJGE2019S1035
WU Haoliang, BO Yuling, DU Yanjun, et al. Acid neutralization capacity, strength properties and micro-mechanism of Pb-contaminated soils stabilized by alkali-activated GGBS[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 137-140. (in Chinese) doi: 10.11779/CJGE2019S1035
|
[11] |
GLASSER F P, LUKE K, ANGUS M J. Modification of cement pore fluid compositions by pozzolanic additives[J]. Cement and Concrete Research, 1988, 18(2): 165-178. doi: 10.1016/0008-8846(88)90001-4
|
[12] |
ROY A. Sulfur speciation in granulated blast furnace slag: an X-ray absorption spectroscopic investigation[J]. Cement and Concrete Research, 2009, 39(8): 659-663. doi: 10.1016/j.cemconres.2009.05.007
|
[13] |
CHAOUCHE M, GAO X X, CYR M, et al. On the origin of the blue/green color of blast-furnace slag-based materials: Sulfur K-edge XANES investigation[J]. Journal of the American Ceramic Society, 2017, 100(4): 1707-1716. doi: 10.1111/jace.14670
|
[14] |
HUANG X, HUANG T, LI S, et al. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer[J]. Ceramics International, 2016, 42(8): 9538-9549. doi: 10.1016/j.ceramint.2016.03.033
|
[15] |
HAN Y S, PARK J H, AHN J S. Aging effects on fractionation and speciation of redox-sensitive metals in artificially contaminated soil[J]. Chemosphere, 2021, 263: 127931. doi: 10.1016/j.chemosphere.2020.127931
|
[16] |
PROCHON P, ZHAO Z F, COURARD L, et al. Influence of activators on mechanical properties of modified fly ash based geopolymer mortars[J]. Materials, 2020, 13(5): 1033. doi: 10.3390/ma13051033
|
[17] |
ZHA F S, LIU J J, CUI K R, et al. Utilization of cement for solidification/stabilization (s/s) of heavy metal contaminated soils[J]. Disaster Advances, 2012, 5(4): 1574-1577.
|
[18] |
GUO X Z, ZHANG W J, YU H S, et al. Reduction stabilization of Cr(Ⅵ) in contaminated soils with a sustainable by-product-based binder[J]. Chemosphere, 2000, 307: 135902.
|
[19] |
OMOTOSO O E, IVEY D G, MIKULA R. Quantitative X-ray diffraction analysis of chromium(Ⅲ) doped tricalcium silicate pastes[J]. Cement and Concrete Research, 1996, 26(9): 1369-1379. doi: 10.1016/0008-8846(96)00118-4
|
[20] |
LI J S, WANG L, TSANG D C W, et al. Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification[J]. Environmental Science and Pollution Research, 2017, 24(36): 27822-27832. doi: 10.1007/s11356-017-0266-x
|
[21] |
HUANG X, HUANG T, LI S, et al. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer[J]. Ceramics International, 2016, 42(8): 9538-9549. doi: 10.1016/j.ceramint.2016.03.033
|
[22] |
刘玉兵, 戴平, 卢娟娟, 等. X射线荧光光谱法分别测定水泥中硫酸盐硫和硫化物硫[J]. 水泥, 2017, 5: 65-68.
LIU Yubin, DAI Ping, LU Juanjuan, et al. Determination of sulfate sulfur and sulfide sulfur in cement using X-ray fluorescence spectrometry[J]. Cement, 2017, 5: 65-68. (in Chinese)
|
[23] |
LI J S, WANG L, CUI J L, et al. Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: spectroscopic investigation and leaching tests[J]. Science of the Total Environment, 2018, 631/632: 1486-1494. doi: 10.1016/j.scitotenv.2018.02.247
|
[24] |
DU Y J, JIANG N J, SHEN S L, et al. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay[J]. Journal of Hazardous Materials, 2012, 225/226: 195-201. doi: 10.1016/j.jhazmat.2012.04.072
|
[25] |
ZHANG W J, JIANG M H. Efficient remediation of heavily As(Ⅲ)-contaminated soil using a pre-oxidation and stabilization/solidification technique[J]. Chemosphere, 2022, 306: 135598. doi: 10.1016/j.chemosphere.2022.135598
|