Citation: | CUI Chunyi, XU Minze, XU Chengshun, ZHAO Jingtong, LIU Hailong, MENG Kun. Seismic fragility analysis of subway station structures considering statistical uncertainty of seismic demands[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 453-462. DOI: 10.11779/CJGE20230980 |
[1] |
王国波, 郝朋飞, 孙富学. 地铁车站结构端部效应影响范围研究[J]. 岩土工程学报, 2020, 42(8): 1435-1445. doi: 10.11779/CJGE202008008
WANG Guobo, HAO Pengfei, SUN Fuxue. Spatial influence scope of end wall of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1435-1445. (in Chinese) doi: 10.11779/CJGE202008008
|
[2] |
XU M Z, CUI C Y, ZHAO J T, et al. Fuzzy seismic fragility analysis of underground structures considering multiple failure criteria[J]. Tunnelling and Underground Space Technology, 2024, 145: 105614. doi: 10.1016/j.tust.2024.105614
|
[3] |
KIANI M, GHALANDARZADEH A, AKHLAGHI T, et al. Experimental evaluation of vulnerability for urban segmental tunnels subjected to normal surface faulting[J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 28-37. doi: 10.1016/j.soildyn.2016.07.012
|
[4] |
American Lifelines Alliance (ALA). Seismic Fragility Formulations for Water Systems, Part1-Guideline[M]. Reston: ASCE-FEMA, 2001: 1-96.
|
[5] |
National Institute of Building Sciences (NIBS). HAZUS-MH: Technical Manual[M]. Washington: National Institute of Building Sciences, 2004: 33-87.
|
[6] |
ZHONG Z L, SHEN Y Y, ZHAO M, et al. Seismic fragility assessment of the Daikai subway station in layered soil[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106044. doi: 10.1016/j.soildyn.2020.106044
|
[7] |
JIANG J W, EL NGGAR H M, XU C S, et al. Effect of ground motion characteristics on seismic fragility of subway station[J]. Soil Dynamics and Earthquake Engineering, 2021, 143: 106618. doi: 10.1016/j.soildyn.2021.106618
|
[8] |
JIANG J W, HESHAM EL NAGGAR M, XU C S, et al. Effect of parameters associated with soil-to-structure relative stiffness on seismic fragility curves of subway station[J]. Tunnelling and Underground Space Technology, 2023, 135: 105057. doi: 10.1016/j.tust.2023.105057
|
[9] |
钟紫蓝, 史跃波, 李锦强, 等. 考虑损伤界限模糊性的地铁车站结构抗震性能评价[J]. 岩土工程学报, 2022, 44(12): 2196-2205. doi: 10.11779/CJGE202212006
ZHONG Zilan, SHI Yuebo, LI Jinqiang, et al. Seismic performance assessment of subway station structures considering fuzzy probability of damage states[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2196-2205. (in Chinese) doi: 10.11779/CJGE202212006
|
[10] |
WAN Z, CHEN J B, TAO W F, et al. A feature mapping strategy of metamodelling for nonlinear stochastic dynamical systems with low to high-dimensional input uncertainties[J]. Mechanical Systems and Signal Processing, 2023, 184: 109656. doi: 10.1016/j.ymssp.2022.109656
|
[11] |
LI D Q, ZHANG L, TANG X S, et al. Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability[J]. Computers and Geotechnics, 2015, 68: 184-195. doi: 10.1016/j.compgeo.2015.04.002
|
[12] |
唐小松, 李典庆, 周创兵, 等. 基于Bootstrap方法的岩土体参数联合分布模型识别[J]. 岩土力学, 2015, 36(4): 913-922.
TANG Xiaosong, LI Dianqing, ZHOU Chuangbing, et al. Bootstrap method for joint probability distribution identification of correlated geotechnical parameters[J]. Rock and Soil Mechanics, 2015, 36(4): 913-922. (in Chinese)
|
[13] |
LUO Z, ATAMTURKTUR S, JUANG C H. Bootstrapping for characterizing the effect of uncertainty in sample statistics for braced excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 13-23. doi: 10.1061/(ASCE)GT.1943-5606.0000734
|
[14] |
LAN Y C, XU J, PINNOLA F. Seismic fragility analysis of structures via an adaptive Gaussian mixture model and its application to resilience assessment[J]. Mechanical Systems and Signal Processing, 2024, 212: 111332. doi: 10.1016/j.ymssp.2024.111332
|
[15] |
王晓磊, 王浠铭, 阎卫东, 等. 基于Copula函数的水平和竖向地震动强度参数相关性分析[J]. 工程力学, 2023, 40(5): 79-92.
WANG Xiaolei, WANG Ximing, YAN Weidong, et al. Correlation analysis of intensity measures ofhorizontal and vertical ground motions based oncopula function[J]. Engineering Mechanics, 2023, 40(5): 79-92. (in Chinese)
|
[16] |
XU M Z, CUI C Y, XU C S, et al. Seismic risk analysis of subway station structures combining the epistemic uncertainties from both seismic hazard and numerical simulation[J]. Journal of Earthquake Engineering, 2024, 28(5): 1474-1494. doi: 10.1080/13632469.2023.2240452
|
[17] |
WRIGGERS P. Computational Contact Mechanics[M]. Berlin: Heidelberg Springer Berlin Heidelberg, 2006.
|
[18] |
杨靖, 云龙, 庄海洋, 等. 三层三跨框架式地铁地下车站结构抗震性能水平研究[J]. 岩土工程学报, 2020, 42(12): 2240-2248. doi: 10.11779/CJGE202012010
YANG Jing, YUN Long, ZHUANG Haiyang, et al. Seismic performance levels of frame-type subway underground station with three layers and three spans[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2240-2248. (in Chinese) doi: 10.11779/CJGE202012010
|
[1] | YING Hongwei, XIONG Yifan, LI Binghe, LÜ Wei, CHENG Kang, ZHANG Jinhong. Time-dependent solution for ground settlement induced by excavation in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2041-2050. DOI: 10.11779/CJGE20230727 |
[2] | WANG Shu-hong, ZHU Bao-qiang. Time series prediction for ground settlement in portal section of mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 813-821. DOI: 10.11779/CJGE202105004 |
[3] | FAN Gang, ZHANG Jian-jing, FU Xiao, WU Jin-biao, TIAN Hua. Axial force of anchor cables in slope reinforced by double-row anti-slide piles and pre-stressed anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1095-1103. DOI: 10.11779/CJGE201606017 |
[4] | WANG Rui, CAO Wei, BRANDENBERG Scott. Method for calculating axial force and settlement of pile foundation in consolidating and reconsolidating ground[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 512-518. DOI: 10.11779/CJGE201503015 |
[5] | GUO Jian, ZHA Lü-ying, PANG You-chao, SHEN Shuang-shuang, XIA Peng. Prediction for ground settlement of deep excavations based on wavelet analysis[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 343-347. DOI: 10.11779/CJGE2014S2060 |
[6] | HUANG Min, LIU Xiao-li. Ground settlement induced by excavation of pile-anchor retainingfoundation pits in soil-rock mixed areas[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 571-575. |
[7] | HAN Kan, LI Deng-ke, WU Guan-zhong. Pull-out tests on anchoring force of prestressed anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 385-387. |
[8] | WANG Guo-cai, MA Da-jun, YANG Yang, ZHANG Jie. 3-D finite element analysis of ground settlement caused by shield construction of metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 266-270. |
[9] | WANG Wei-dong, XU Zhong-hua, WANG Jian-hua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. |
[10] | ZHANG Zhong-miao, LIN Cun-gang, WU Shi-ming, LIU Guan-shui, WANG Cheng-shan, XIE Wen-bin. Analysis and control of ground settlement of embankments in construction of cross-river shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 977. |
1. |
刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 .
![]() | |
2. |
蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 .
![]() | |
3. |
张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 .
![]() | |
4. |
张晓明,谭蓉,贺育明,强继峰,孙森林,张朝军,梁刚. 基于时频域信号特征的输电塔运行模态分析. 电网与清洁能源. 2025(03): 46-52+59 .
![]() | |
5. |
王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 .
![]() | |
6. |
樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 .
![]() | |
7. |
翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 .
![]() | |
8. |
黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 .
![]() |