• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHU Zhaoxiang, WANG Yiming, LI Xiaozhao, DONG Kaijun, GU Xiaobin, JIA Guosheng. Regular triangular prism-quasi-inscribed sphere unit cell model for predicting thermal conductivity of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2580-2590. DOI: 10.11779/CJGE20230900
Citation: CHU Zhaoxiang, WANG Yiming, LI Xiaozhao, DONG Kaijun, GU Xiaobin, JIA Guosheng. Regular triangular prism-quasi-inscribed sphere unit cell model for predicting thermal conductivity of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2580-2590. DOI: 10.11779/CJGE20230900

Regular triangular prism-quasi-inscribed sphere unit cell model for predicting thermal conductivity of geomaterials

More Information
  • Received Date: September 14, 2023
  • Available Online: May 10, 2024
  • Inspired by the homogenization theory in the field of micromechanics, a regular triangular prism-quasi-inscribed sphere unit cell model at the meso-scale for predicting the thermal conductivity of two-phase (dry or water-saturated) geomaterials is proposed by using the lumped parameter thermo-electric analogy method. The performance of the established model is evaluated with 34 sets of thermal conductivity experimental data and 238 sets of thermal conductivity predictions. The results indicated that: (1) The regular triangular prism-quasi-inscribed sphere unit cell is a real representative elementary volume that can characterize the macroscopic continuum geomaterials and overcome the inherent spatial correction defects of the sphere and cylinder unit cell structures. Besides, this model can be used for soil-rocks with the porosity of 0~0.6, covering most porosity range of the natural geomaterials. (2) The MATLAB data visualization illustrate that the proposed model gives thermal conductivities concavely decreasing with porosity, and the model performance is better at relative high porosity (0.3~0.6) than those at low void ratio (< 0.25). (3) Taking the typical geomaterials under two-phase condition as an example, this model has better predictive performance than other unit cell theoretical models, especially under dry condition (the RMSE and NRMSE are, respectively, 0.89W/(m·K) and 31%). (4) Finally, the unit cell model proposed herein can be extended to three-phase unsaturated state (general solid-liquid-gas), and a promising initiative, i.e., to study the effects of component and structure on the effective thermal conductivity of porous- granular geomaterials from an evolutionary perspective, is conjectured based on pore/particle structure and pore water morphology, aiming to provide a new way for further investigating the macroscopic thermo-mechanical behavior of tanglesome geomaterials.
  • [1]
    徐云山, 肖子龙, 孙德安, 等. 土体导热系数温度效应及其预测模型[J]. 岩土工程学报, 2023, 45(6): 1180-1189. doi: 10.11779/CJGE20220243

    XU Yunshan, XIAO Zilong, SUN Dean, et al. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. (in Chinese) doi: 10.11779/CJGE20220243
    [2]
    CHENG P, HSU C T. The effective stagnant thermal conductivity of porous media with periodic structures[J]. Journal of Porous Media, 1999, 2(1): 19-38. doi: 10.1615/JPorMedia.v2.i1.20
    [3]
    CHU Z X. 1D monodirectional or 2D quasi-uniaxial parallel heat fluxes: a discussion on 'Soil thermal conductivity estimated using a semi-analytical approach'[J]. Geothermics, 2022, 99: 102301. doi: 10.1016/j.geothermics.2021.102301
    [4]
    GEMANT A. The thermal conductivity of soils[J]. Journal of Applied Physics, 1950, 21(8): 750-752. doi: 10.1063/1.1699752
    [5]
    DE VRIES D A. Thermal conductivity of soil[J]. Nature, 1956, 178: 1074. doi: 10.1038/1781074a0
    [6]
    HSU C T, CHENG P, WONG K W. Modified Zehner- Schlunder models for stagnant thermal conductivity of porous media[J]. International Journal of Heat and Mass Transfer, 1994, 37(17): 2751-2759. doi: 10.1016/0017-9310(94)90392-1
    [7]
    GORI F. A theoretical model for predicting the effective thermal conductivity of unsaturated frozen soils[C]// Proceedings of the fourth international conference on Permafrost, Fairbanks (Alaska). Washington D C: National Academy Press, 1983.
    [8]
    GORI F, CORASANITI S. Theoretical prediction of the soil thermal conductivity at moderately high temperatures[J]. Journal of Heat Transfer, 2002, 124(6): 1001-1008. doi: 10.1115/1.1513573
    [9]
    HSU C T, CHENG P, WONG K W. A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media[J]. Journal of Heat Transfer, 1995, 117(2): 264-269. doi: 10.1115/1.2822515
    [10]
    CHEN S X. Thermal conductivity of sands[J]. Heat and Mass Transfer, 2008, 44(10): 1241-1246. doi: 10.1007/s00231-007-0357-1
    [11]
    GORI F, CORASANITI S. New model to evaluate the effective thermal conductivity of three-phase soils[J]. International Communications in Heat and Mass Transfer, 2013, 47: 1-6. doi: 10.1016/j.icheatmasstransfer.2013.07.004
    [12]
    CORASANITI S, GORI F. Heat conduction in two and three-phase media with solid spherical particles of the same diameter[J]. International Journal of Thermal Sciences, 2017, 112: 460-469. doi: 10.1016/j.ijthermalsci.2016.10.022
    [13]
    CHU Z X, ZHOU G Q, WANG Y J, et al. A nalytical model for the stagnant effective thermal conductivity of low porosity granular geomaterials[J]. International Journal of Heat and Mass Transfer, 2019, 133: 994-1007. doi: 10.1016/j.ijheatmasstransfer.2018.12.167
    [14]
    JIA G, MA Z, CAO Y, et al. A new packed-sphere model for geological materials thermal conductivity prediction at moderate porosity range for geothermal utilization[J]. International Journal of Energy Research, 2019, 44: 9479 - 9493.
    [15]
    JIA G, MA Z, ZHANG Y P, et al. Series-parallel resistance method based thermal conductivity model for rock-soil with low or high porosity[J]. Geothermics, 2020, 84: 101742. doi: 10.1016/j.geothermics.2019.101742
    [16]
    曾召田, 吕海波, 赵艳林, 等. 广西红黏土热导率测试及理论预测模型研究[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3525-3534.

    ZENG Zhaotian, LÜ Haibo, ZHAO Yanlin, et al. Study on thermal conductivity test and theoretical prediction model of Guangxi red clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3525-3534. (in Chinese)
    [17]
    DONG Y, MCCARTNEY J S, LU N. Critical review of thermal conductivity models for unsaturated soils[J]. Geotechnical and Geological Engineering, 2015, 33(2): 207-221. doi: 10.1007/s10706-015-9843-2
    [18]
    CHEN S X. Thermal conductivity of sands[J]. Heat and Mass Transfer, 2008, 44(10): 1241-1246. doi: 10.1007/s00231-007-0357-1
    [19]
    ALBERT K, SCHULZE M, FRANZ C, et al. Thermal conductivity estimation model considering the effect of water saturation explaining the heterogeneity of rock thermal conductivity[J]. Geothermics, 2017, 66: 1-12. doi: 10.1016/j.geothermics.2016.11.006
    [20]
    LU S, REN T S, GONG Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1): 8. doi: 10.2136/sssaj2006.0041
    [21]
    肖琳, 李晓昭, 赵晓豹, 等. 含水率与孔隙率对土体热导率影响的室内实验[J]. 解放军理工大学学报(自然科学版), 2008, 9(3): 241-247.

    XIAO Lin, LI Xiaozhao, ZHAO Xiaobao, et al. Laroratory on influences of moisture content and porosity on thermal conductivity of soils[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2008, 9(3): 241-247. (in Chinese)
    [22]
    WHITFIELD J. Survival of the likeliest?[J]. Plos Biology, 2007, 5 (5): 962-965.
    [23]
    BEJAN A. Shape and Structure, from Engineering to Nature[M]. Cambridge: Cambridge University, 2000.
    [24]
    陈林根. 构形理论及其应用的研究进展[J]. 中国科学: 技术科学, 2012, 42(5): 505-524.

    CHEN Lin'gen. Research progress of configuration theory and its application[J]. Scientia Sinica (Technologica), 2012, 42(5): 505-524. (in Chinese)
    [25]
    MITARAI N, NORI F. Wet granular materials[J]. Advances in Physics, 2006, 55(1/2): 1-45.
    [26]
    LU N, DONG Y. Closed-form equation for thermal conductivity of unsaturated soils at room temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 04015016. doi: 10.1061/(ASCE)GT.1943-5606.0001295
    [27]
    LU S, LU Y L, PENG W, et al. A generalized relationship between thermal conductivity and matric suction of soils[J]. Geoderma, 2019, 337: 491-497. doi: 10.1016/j.geoderma.2018.09.057
    [28]
    赵阳升. 岩体力学发展的一些回顾与若干未解之百年问题[J]. 岩石力学与工程学报, 2021, 40(7): 1297-1336.

    ZHAO Yangsheng. Retrospection on the development of rock mass mechanics and the summary of some unsolved centennial problems[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1297-1336. (in Chinese)
    [29]
    何雅玲. 前言: 祝贺过增元院士85华诞专辑[J]. 中国科学: 技术科学, 2021, 51(10): 1135-1136, 1132.

    HE Yaling. Preface: congratulations on the 85th birthday of academician GUO Zeng Yuan[J]. Scientia Sinica (Technologica), 2021, 51(10): 1135-1136, 1132. (in Chinese)

Catalog

    Article views (201) PDF downloads (61) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return