Citation: | XIAO Weimin, WENG Jinyao, ZHONG Jianmin, ZHU Zhanyuan. Experimental study on acid erosion behavior of artificial rock joint plugged by MICP method[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 217-224. DOI: 10.11779/CJGE20230874 |
[1] |
MITCHELL J K, SANTAMARINA J C. Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1222-1233. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222)
|
[2] |
DE MUYNCK W, DE BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials: a review[J]. Ecological Engineering, 2010, 36(2): 118-136. doi: 10.1016/j.ecoleng.2009.02.006
|
[3] |
NAVEED M, DUAN J G, UDDIN S, et al. Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil[J]. Ecological Engineering, 2020, 153: 105885. doi: 10.1016/j.ecoleng.2020.105885
|
[4] |
EL MOUNTASSIR G, MINTO J M, VAN PAASSEN L A, et al. Chapter two applications of microbial processes in geotechnical engineering[J]. Advances in Applied Microbiology, 2018, 104: 39-91.
|
[5] |
何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008
HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008
|
[6] |
刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14.
LIU Hanlong, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese)
|
[7] |
史金权, 王磊, 张轩铭, 等. 微生物加固钙质砂地基电阻率特性试验研究[J]. 岩土工程学报, 2024, 46(2): 244-253. doi: 10.11779/CJGE20221281
SHI Jinquan, WANG Lei, ZHANG Xuanming, et al. Experimental study on electricity resistivity of MICP-treated calcareous sand foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 244-253. (in Chinese) doi: 10.11779/CJGE20221281
|
[8] |
PHILLIPS A J, LAUCHNOR E, ELDRING J J, et al. Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation[J]. Environmental Science & Technology, 2013, 47(1): 142-149. http://europepmc.org/abstract/MED/22913538
|
[9] |
PHILLIPS A J, ELDRING J (, HIEBERT R, et al. Design of a meso-scale high pressure vessel for the laboratory examination of biogeochemical subsurface processes[J]. Journal of Petroleum Science and Engineering, 2015, 126: 55-62. doi: 10.1016/j.petrol.2014.12.008
|
[10] |
PHILLIPS A J, CUNNINGHAM A B, GERLACH R, et al. Fracture sealing with microbially-induced calcium carbonate precipitation: a field study[J]. Environmental Science & Technology, 2016, 50(7): 4111-4117. http://www.xueshufan.com/publication/2276937994
|
[11] |
MINTO J M, MACLACHLAN E, EL MOUNTASSIR G, et al. Rock fracture grouting with microbially induced carbonate precipitation[J]. Water Resources Research, 2016, 52(11): 8827-8844. doi: 10.1002/2016WR018884
|
[12] |
TOBLER D J, MINTO J M, EL MOUNTASSIR G, et al. Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: influence on hydraulic and mechanical performance[J]. Water Resources Research, 2018, 54(10): 8295-8308. doi: 10.1029/2018WR023032
|
[13] |
SANG G J, LUNN R J, MINTO J M, et al. Microbially induced calcite precipitation for sealing anhydrite fractures with gouges[C]// 56th US Rock Mechanics/Geomechanics Symposium, Santa Fe, 2022.
|
[14] |
邓红卫, 罗益林, 邓畯仁, 等. 微生物诱导碳酸盐沉积改善裂隙岩石防渗性能和强度的试验研究[J]. 岩土力学, 2019, 40(9): 3542-3548, 3558.
DENG Hongwei, LUO Yilin, DENG Junren, et al. Experimental study of improving impermeability and strength of fractured rock by microbial induced carbonate precipitation[J]. Rock and Soil Mechanics, 2019, 40(9): 3542-3548, 3558. (in Chinese)
|
[15] |
支永艳, 邓华峰, 肖瑶, 等. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(增刊1): 237-244.
ZHI Yongyan, DENG Huafeng, XIAO Yao, et al. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting[J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244. (in Chinese)
|
[16] |
彭述权, 张珂嘉, 康景宇, 等. 裂隙岩体微生物阻渗机理试验研究[J]. 长江科学院院报, 2020, 37(9): 57-63, 69.
PENG Shuquan, ZHANG Kejia, KANG Jingyu, et al. Experimental study on microbial impermeability mechanism of fractured rock mass[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 57-63, 69. (in Chinese)
|
[17] |
LAMBERT J W M, NOVAKOWSKI K, BLAUW M, et al. Pamper bacteria, they will help us: application of biochemical mechanisms in geo-environmental engineering[C]// GeoFlorida 2010. Orlando, American Society of Civil Engineers, 2010.
|
[18] |
MINTO J M, HINGERL F F, BENSON S M, et al. X-ray CT and multiphase flow characterization of a 'bio-grouted' sandstone core: The effect of dissolution on seal longevity[J]. International Journal of Greenhouse Gas Control, 2017, 64: 152-162. doi: 10.1016/j.ijggc.2017.07.007
|
[19] |
RIBEIRO B G O, GOMEZ M G. Investigating the dissolution behavior of calcium carbonate bio-cemented sands[C]// Geo-Congress. Charlotte, 2022.
|
[20] |
RIBEIRO B G O, GOMEZ M G. Dissolution behavior of ureolytic biocementation: physical experiments and reactive transport modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2023, 149(9): 04023071. doi: 10.1061/JGGEFK.GTENG-11275
|
[21] |
TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307. http://www.onacademic.com/detail/journal_1000033971026610_f79f.html
|
[22] |
《工程地质手册》编委会. 工程地质手册[M]. 5版. 北京:
中国建筑工业出版社, 2018: 1210-1210.
Geological Engineering Handbook Editorial Board. Geological Engineering Handbook[M]. 5th ed. Beijing: China Architecture & Building Press, 2018: 1215-1215. (in Chinese)
|
1. |
高猛,何恩光,周鹏,田淞文. 盾构机切桩对主轴承载荷及寿命的影响. 轴承. 2025(05): 1-7 .
![]() | |
2. |
王德福. 盾构滚刀切削桩基相互作用机理及关键参数分析研究——以海珠湾盾构隧道为例. 现代隧道技术. 2024(01): 216-228 .
![]() | |
3. |
张锟,徐前卫,孙庆文,薛海儒,来守玺. 地铁盾构下穿高层建筑基础的扰动变形影响与实测研究. 城市轨道交通研究. 2024(04): 129-135 .
![]() | |
4. |
乔世范,张睿,王广,王刚,陈道龙,张喆. 砾砂地层盾构切削大直径群桩的刀具研究. 铁道科学与工程学报. 2024(05): 1966-1978 .
![]() | |
5. |
丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
![]() | |
6. |
陈一凡,黄书华,沈翔,盛健,陈湘生,张良. 密集城区超大直径盾构切削群桩对上部建筑物振动影响规律分析. 现代隧道技术. 2024(03): 266-275 .
![]() | |
7. |
周广铁,朱利,高文宪,侯邦,朱睿琦,李娇蓉. 盾构滚刀切削钢筋混凝土桩基影响规律研究. 江西建材. 2024(06): 243-245 .
![]() | |
8. |
韩强,张旭,成铭,胡军勇,谢开晋. 地铁盾构下穿既有车站直接磨桩技术研究. 工程建设与设计. 2024(17): 186-189 .
![]() | |
9. |
白建军,彭凯西,吴奔,梁嘉骏. 盾构直接切削钢筋混凝土桥基引起的变形分析. 现代隧道技术. 2024(S1): 445-453 .
![]() | |
10. |
赵立锋,郭伟,胡适韬,程传过. 盾构穿越既有车站结构地下连续墙施工关键技术研究. 现代隧道技术. 2024(S1): 996-1001 .
![]() | |
11. |
刘欣然,高伟琪,刘学彦,韩汝存,马纯梁. 盾构直接连续切削大直径桩施工技术研究. 现代隧道技术. 2024(S1): 1002-1010 .
![]() | |
12. |
林向阳,高伟琪,刘学彦,赵洪生,郑德文. 盾构直接切削大直径桩施工技术研究. 土木工程学报. 2024(S1): 178-183 .
![]() | |
13. |
万宝林. 盾构穿越既有线运营车站围护桩关键施工技术. 建筑机械化. 2023(03): 24-27 .
![]() | |
14. |
张昆. 盾构掘进遇既有桥桩截桩桥梁防护应用研究. 工程技术研究. 2023(04): 108-110 .
![]() | |
15. |
刘欣玮,杨涛. 地铁隧道下穿既有车站方案研究. 工程技术研究. 2023(04): 208-210 .
![]() | |
16. |
李谷阳,王广. 盾构刀具形状对切削桩基影响及刀具选型研究. 广东建材. 2023(05): 112-115 .
![]() | |
17. |
姜梅杰,徐涛,刘晓凤. 隧道施工对邻近桩基变形与受力影响数值模拟研究. 黑龙江工业学院学报(综合版). 2023(06): 117-125 .
![]() | |
18. |
廖秋林,宋跃均,方建华,杨昊,赵立安,陈子豪. 软流塑地层盾构切削钢筋混凝土桩基工程实践. 都市快轨交通. 2023(05): 100-109 .
![]() | |
19. |
贾蓬,孙占阳,赵文,宋立民. 盾构切削桩基研究现状综述. 隧道建设(中英文). 2023(10): 1637-1656 .
![]() | |
20. |
邱金亮. 大直径盾构隧道近距离穿越桥梁桩基扰动分析. 黑龙江交通科技. 2023(12): 93-96+101 .
![]() | |
21. |
岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 .
![]() | |
22. |
朱敏,徐琛,汪子豪. 富水砂层既有运营车站地下障碍物的冻结法清障方案力学分析及工程应用. 隧道建设(中英文). 2023(S2): 395-405 .
![]() | |
23. |
徐敬民,章定文,刘松玉. 地表框架结构作用下隧道施工诱发的砂质地层变形. 岩土工程学报. 2022(04): 602-612 .
![]() | |
24. |
王军. 大直径泥水盾构始发段掘进对近接既有地铁桥梁的影响分析. 中国安全生产科学技术. 2022(04): 176-184 .
![]() | |
25. |
高洪梅,蔡鑫涛,张正,李兆,王志华. 盾构下穿桥梁桩基的截桩效应. 地下空间与工程学报. 2022(06): 2044-2051 .
![]() | |
26. |
张天宝,王雪颖. 基于AHP-熵权法的跨燃气管道现浇梁施工风险评价. 工业安全与环保. 2021(02): 65-69 .
![]() | |
27. |
金平,夏童飞,刘晓阳. 复合地层盾构磨除地下连续墙关键技术研究. 四川建筑. 2021(01): 224-228 .
![]() | |
28. |
奚晓广,吴淑伟,王哲,孙九春,许四法,王瑞. 砂砾地层盾构施工土体变形规律三维数值分析. 地基处理. 2021(01): 29-33 .
![]() | |
29. |
赵勇,周学彬,彭祖民,喻伟,李宏波. 盾构下穿高强预应力管桩基施工技术. 建筑机械化. 2020(08): 51-54 .
![]() | |
30. |
庄欠伟,袁一翔,徐天明,张弛. 射流联合盾构切削钢筋混凝土仿真与试验. 岩土工程学报. 2020(10): 1817-1824 .
![]() | |
31. |
李发勇. 可拆解盾构下穿既有桥桩磨桩施工影响研究——以宁波轨道交通4号线柳宁盾构区间为例. 隧道建设(中英文). 2020(10): 1506-1515 .
![]() | |
32. |
周国强,杨高伟,奚灵智. 软土地区地铁盾构区间的桥梁稳定性研究. 工程技术研究. 2020(24): 34-36 .
![]() |