• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zefan, LIU Donghai, YUE Xueqin, YANG Jiaqi. Experimental study on frost heave characteristics of PCM-clay under one-dimensional freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 705-714. DOI: 10.11779/CJGE20230837
Citation: WANG Zefan, LIU Donghai, YUE Xueqin, YANG Jiaqi. Experimental study on frost heave characteristics of PCM-clay under one-dimensional freeze-thaw[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 705-714. DOI: 10.11779/CJGE20230837

Experimental study on frost heave characteristics of PCM-clay under one-dimensional freeze-thaw

More Information
  • Received Date: August 29, 2023
  • Available Online: November 10, 2024
  • The clay incorporated with phase change material (PCM-clay) has the characteristics of freezing resistance and temperature control, which makes it possible to construct clay core walls, channels, embankments, roads and other scenarios with negative temperature. According to the environmental characteristics of daily cyclic freeze-thaw effects on the construction site in winter, a series of repeated one-dimensional freeze-thaw experiments under closed system, step thermoregulation and shallow freezing conditions in a closed system are simulated indoors to study the frost heave characteristics of the PCM-clay and the law and mechanism of frost heaving development under the action of freeze thaw cycles. The results show that the frost heave characteristics of the PCM-clay is improved compared with that of the clay without PCM (pure clay). After freeze-thaw cycles, the final frost heaving amount of the PCM-clay is far less than that of the pure clay under the same freeze-thaw cycles. The downward moving rate of soil freezing front and the degree of moisture migration also decrease. After several freeze-thaw cycles, the cryogenic structure of the pure soil has developed more significantly, while the PCM-clay does not exhibit obvious frost heave sensitivity, and the formation and development of cryogenic structure are very slow. The analysis shows that the low water content, large porosity, high latent heat energy storage, freezing shrinkage and hydrophobicity of the PCM are the main reasons for improving the frost heave characteristics of the PCM-clay. This study can provide a theoretical basis for the PCM-clay as a construction material for potential dam core walls, channels, embankments, and roads to provide winter construction frost protection in cold regions.
  • [1]
    穆彦虎, 马巍, 李国玉, 等. 冻融作用对压实黄土结构影响的微观定量研究[J]. 岩土工程学报, 2011, 33(12): 1919-1925. http://cge.nhri.cn/cn/article/id/14448

    MU Yanhu, MA Wei, LI Guoyu, et al. Quantitative analysis of impacts of freeze-thaw cycles upon microstructure of compacted loess[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1919-1925. (in Chinese) http://cge.nhri.cn/cn/article/id/14448
    [2]
    郑郧, 马巍, 邴慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(5): 1282-1287, 1294.

    ZHENG Yun, MA Wei, BING Hui. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287, 1294. (in Chinese)
    [3]
    鲁洋, 刘斯宏, 张勇敢, 等. 土石坝心墙掺砾土的渗透特性冻融演化规律试验研究[J]. 水利学报, 2021, 52(5): 603-611.

    LU Yang, LIU Sihong, ZHANG Yonggan, et al. Experimental study on permeability characteristicsof clay-gravel mixtures under freezing-thawing actions in core wall of earth-rock dams[J]. Journal of Hydraulic Engineering, 2021, 52(5): 603-611. (in Chinese)
    [4]
    崔宏环, 秦晓鹏, 王文涛, 等. 冻融条件下非饱和路基土的强度及微观特性研究[J]. 冰川冻土, 2019, 41(5): 1115-1121.

    CUI Honghuan, QIN Xiaopeng, WANG Wentao, et al. Study on the strength and microscopic characteristics of unsaturated subgrade soil under freezing-thawing conditions[J]. Journal of Glaciology and Geocryology, 2019, 41(5): 1115-1121. (in Chinese)
    [5]
    周永毅, 张建经. 一种新型冻土可视化试验系统及其在冻融试验中的应用[J]. 岩石力学与工程学报, 2020, 39(8): 1671-1681.

    ZHOU Yongyi, ZHANG Jianjing. A novel visualization apparatus for freezing soils and its application in freezing-thawing test[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1671-1681. (in Chinese)
    [6]
    王永涛, 王大雁, 马巍, 等. 青藏粉质黏土单向冻结冷生构造发育及冻胀发展过程试验研究[J]. 岩土力学, 2016, 37(5): 1333-1342.

    WANG Yongtao, WANG Dayan, MA Wei, et al. Experimental study of development of cryostructure and frost heave of the Qinghai-Tibet silty clay under one-dimensional freezing[J]. Rock and Soil Mechanics, 2016, 37(5): 1333-1342. (in Chinese)
    [7]
    任秀玲, 俞祁浩, 王金国, 等. 黏土单向冻融作用下冷生构造及冻胀特性试验研究[J]. 水利学报, 2021, 52(1): 81-92.

    REN Xiuling, YU Qihao, WANG Jinguo, et al. Experimental study on the characteristics of cryostructure and frost heave of clay under one-dimensional freeze-thaw[J]. Journal of Hydraulic Engineering, 2021, 52(1): 81-92. (in Chinese)
    [8]
    杨磊, 姚远, 张冬冬. 有机相变储能材料的研究进展[J]. 新能源进展, 2012, 7(5): 464-472.

    YANG Lei, YAO Yuan, ZHANG Dongdong, et al. Progress of organic phase change energy storage materials[J]. Advances in New and Renewable Energy, 2012, 7(5): 464-472. (in Chinese)
    [9]
    MIROSLAVA K, YASER A. Temperature control to improve performance of hempcrete-phase change material wall assemblies in a cold climate[J]. Energies, 2021, 14(17): 5343. doi: 10.3390/en14175343
    [10]
    SAKULICH A R, BENTZ D P. Increasing the service life of bridge decks by incorporating phase-change materials to reduce freeze-thaw cycles[J]. Journal of Materials in Civil Engineering, 2012, 24(8): 1034-1042. doi: 10.1061/(ASCE)MT.1943-5533.0000381
    [11]
    ANUPAM B R, SAHOO U C, RATH P. Phase change materials for pavement applications: a review[J]. Construction and Building Materials, 2020, 247: 118553. doi: 10.1016/j.conbuildmat.2020.118553
    [12]
    王友乐, 刘东海, 梁健羽. 用于寒区心墙冬季施工的相变黏土热学性能研究[J]. 水力发电学报, 2021, 40(7): 105-117.

    WANG Youle, LIU Donghai, LIANG Jianyu. Investigation on thermal properties of core-wall clay incorporated with phase change material for winter construction in cold regions[J]. Journal of Hydroelectric Engineering, 2021, 40(7): 105-117. (in Chinese)
    [13]
    刘东海, 戴怀建, 郑涵. 心墙相变砾质土工程特性及寒区冬季施工防冻控温研究[J]. 水利学报, 2022, 53(8): 914-925.

    LIU Donghai, DAI Huaijian, ZHENG Han. Engineering characteristics and temperature control of phase change material and gravel mixed soil for core wall anti-freezing[J]. Journal of Hydraulic Engineering, 2022, 53(8): 914-925. (in Chinese)
    [14]
    武立波, 祁伟, 牛富俊, 等. 我国季节性冻土区公路路基冻害及其防治研究进展[J]. 冰川冻土, 2015, 37(5): 1283-1293.

    WU Libo, QI Wei, NIU Fujun, et al. A review of studies on roadbed frozen damage and countermeasures in seasonal frozen ground regions in China[J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1283-1293. (in Chinese)
    [15]
    凌盛, 姚鑫, 王宗盛. 高海拔多年冻土分布特征、冻融破坏以及工程防治措施[J]. 工程地质学报, 2014, 22(增刊1): 476-482.

    LING Sheng, YAO Xin, WANG Zongsheng. Distribution feature, frozen thawing damage and engineering prevention measure of high-altitude permafrost[J]. Journal of Engineering Geology, 2024, 22(S1): 476-482. (in Chinese)
    [16]
    赵亮, 景立平, 单振东. 冻土冻胀模型研究现状与进展[J]. 自然灾害学报, 2020, 29(4): 43-52.

    ZHAO Liang, JING Liping, SHAN Zhendong. Research status and progress of frost heave model for frozen soil[J]. Journal of Natural Disasters, 2020, 29(4): 43-52. (in Chinese)
    [17]
    CHEN Y, HUANG Y, WU M, et al. Fly ash/paraffin composite phase change material used to treat thermal and mechanical properties of expansive soil in cold regions[J]. Journal of Renewable Materials, 2022, 10(4): 1153-1173. doi: 10.32604/jrm.2022.018856
    [18]
    黄英豪, 陈永, 朱洵, 等. 相变材料改良膨胀土冻融性能试验研究及微观机理分析[J]. 岩土工程学报, 2021, 43(11): 1994-2002. doi: 10.11779/CJGE202111005

    HUANG Yinghao, CHEN Yong, ZHU Xun, et al. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. (in Chinese) doi: 10.11779/CJGE202111005
    [19]
    MAHEDI M, CETIN B, CETIN K S. Freeze-thaw performance of phase change material (PCM) incorporated pavement subgrade soil[J]. Construction and Building Materials, 2019, 202: 449-464. doi: 10.1016/j.conbuildmat.2018.12.210
    [20]
    ZHANG S, TENG J, HE Z, et al. Canopy effect caused by vapour transfer in covered freezing soils[J]. Géotechnique, 2016, 66(11): 927-940. doi: 10.1680/jgeot.16.P.016
    [21]
    薛珂, 温智, 张明礼, 等. 土体冻结过程中基质势与水分迁移及冻胀的关系[J]. 农业工程学报, 2017, 33(10): 176-183. doi: 10.11975/j.issn.1002-6819.2017.10.023

    XUE Ke, WEN Zhi, ZHANG Mingli, et al. Relationship between matric potential, moisture migration and frost heave in freezing process of soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 176-183. (in Chinese) doi: 10.11975/j.issn.1002-6819.2017.10.023
    [22]
    WANG Y T, HUA W H, XU X T, et al. Moisture migration in the Qinghai-Tibet silty clay within an added quartz sand layer under one-dimensional freezing[J]. Cold Regions Science and Technology, 2022, 202: 103627. doi: 10.1016/j.coldregions.2022.103627
    [23]
    于本田, 陈延飞, 李双洋, 等. 正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化[J]. 复合材料学报, 2022, 39(6): 2864-2874.

    YU Bentian, CHEN Yanfei, LI Shuangyang, et al. Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2864-2874. (in Chinese)
    [24]
    章学来, 王绪哲, 王继芬, 等. 正十四烷烃相变过程的分子动力学模拟[J]. 储能科学与技术, 2019, 8(5): 874-879.

    ZHANG Xuelai, WANG Xuzhe, WANG Jifen, et al. Molecular dynamics simulation of phase transformation process of n-tetradecane[J]. Energy Storage Science and Technology, 2019, 8(5): 874-879. (in Chinese)
    [25]
    刘东海, 郑涵, 杨家琦. 松铺覆盖下心墙相变土防冻控温性能试验研究[J]. 水力发电学报, 2022, 41(7): 38-46.

    LIU Donghai, ZHENG Han, YANG Jiaqi. Investigation on anti-freezing performance of core wall phase change material-incorporated clay with an upper loose-covering layer[J]. Journal of Hydroelectric Engineering, 2022, 41(7): 38-46. (in Chinese)
    [26]
    BAI R Q, LAI Y M, PEI W S, et al. Study on the frost heave behavior of the freezing unsaturated silty clay[J]. Cold Regions Science and Technology, 2022, 197: 103525. doi: 10.1016/j.coldregions.2022.103525
    [27]
    邢述彦. 土壤冻结温度测定试验研究[J]. 太原理工大学学报, 2004, 35(4): 385-387, 409.

    XING Shuyan. Experiment study on measurements of soil frozen temperature[J]. Journal of Taiyuan University of Technology, 2004, 35(4): 385-387, 409. (in Chinese)
    [28]
    徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010.

    XU Xuezu, WANG Jiacheng, ZHANG Lixin. Permafrost Physics[M]. Beijing: Science Press, 2010. (in Chinese)
    [29]
    ARENSON L U, SEGO D C. A new hypothesis on ice lens formation in frost-susceptible soils[C]// 9th International Conference on Permafrost, Airbanks, 2008.
    [30]
    张世民, 李双洋. 青藏粉质黏土冻融循环试验研究[J]. 冰川冻土, 2012, 34(3): 625-631.

    ZHANG Shimin, LI Shuangyang. Experimental study of the Tibetan silty clay under freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 625-631. (in Chinese)
    [31]
    KONRAD J M, SAMSON M. Hydraulic conductivity of kaolinite-silt mixtures subjected to closed-system freezing and thaw consolidation[J]. Canadian Geotechnical Journal, 2000, 37(4): 857-869.
    [32]
    CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Engineering Geology, 1979, 13(1/2/3/4): 73-92.
    [33]
    MORGENSTERN N R. Geotechnical engineering and frontier resource development[J]. Géotechnique, 1981, 31(3): 305-365.
    [34]
    ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
    [35]
    LIU Z Y, LIU J K, LI X, et al. Experimental study on the volume and strength change of an unsaturated silty clay upon freezing[J]. Cold Regions Science and Technology, 2019, 157: 1-12.
    [36]
    王效宾, 杨平, 王海波, 等. 冻融作用对黏土力学性能影响的试验研究[J]. 岩土工程学报, 2009, 31(11): 1768-1772. http://cge.nhri.cn/cn/article/id/8440

    WANG Xiaobin, YANG Ping, WANG Haibo, et al. Experimental study on effects of freezing and thawing on mechanical properties of clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1768-1772. (in Chinese) http://cge.nhri.cn/cn/article/id/8440
    [37]
    梁波, 张贵生, 刘德仁. 冻融循环条件下土的融沉性质试验研究[J]. 岩土工程学报, 2006, 28(10): 1213-1217. http://cge.nhri.cn/cn/article/id/12188

    LIANG Bo, ZHANG Guisheng, LIU Deren. Experimental study on thawing subsidence characters of permafrost under frost heaving and thawing circulation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1213-1217. (in Chinese) http://cge.nhri.cn/cn/article/id/12188
    [38]
    杨成松, 何平, 程国栋, 等. 冻融作用对土体干容重和含水量影响的试验研究[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2695-2699.

    YANG Chengsong, HE Ping, CHENG Guodong, et al. Testing study on influence of freezing and thawing on dry density and water content of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2695-2699. (in Chinese)
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (276) PDF downloads (74) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return