Citation: | WANG Fei, ZOU Yanlin, PANG Rui, HE Benguo, FAN Lifeng, MENG Dehao, LIU Tiantian, SHI Yao. Thermal cracking mechanism of granite during heating and cooling processes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(10): 2138-2147. DOI: 10.11779/CJGE20230709 |
[1] |
ROSSI E, KANT M A, BORKELOH O, et al. Experiments on rock-bit interaction during a combined thermo-mechanical drilling method[C]// 43rd Workshop on Geothermal Reservoir Engineering 2018. Proceedings of a Meeting Held 12-14 February 2018, Stanford, California, Curran Associates, Inc., 2019: 1874.
|
[2] |
MA X, WANG G, HU D, et al. Mechanical properties of granite under real-time high temperature and three-dimensional stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 136: 104521. doi: 10.1016/j.ijrmms.2020.104521
|
[3] |
YANG Z, YANG S Q, TIAN W L. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104573. doi: 10.1016/j.ijrmms.2020.104573
|
[4] |
YIN T B, SHU R H, LI X B, et al. Comparison of mechanical properties in high temperature and thermal treatment granite[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1926-1937. doi: 10.1016/S1003-6326(16)64311-X
|
[5] |
KUMARI W G P, RANJITH P G, PERERA M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments[J]. Engineering Geology, 2017, 229: 31-44. doi: 10.1016/j.enggeo.2017.09.012
|
[6] |
WANG Z, HE A, SHI G, et al. Temperature effect on AE energy characteristics and damage mechanical behaviors of granite[J]. International Journal of Geomechanics, 2018, 18(3): 04017163. doi: 10.1061/(ASCE)GM.1943-5622.0001094
|
[7] |
WANG F, KONIETZKY H. Thermal cracking in granite during a heating-cooling cycle up to 1000℃: laboratory testing and real-time simulation[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1411-1428. doi: 10.1007/s00603-021-02740-4
|
[8] |
BROWNING J, MEREDITH P, GUDMUNDSSON A. Cooling-dominated cracking in thermally stressed volcanic rocks[J]. Geophysical Research Letters, 2016, 43(16): 8417-8425. doi: 10.1002/2016GL070532
|
[9] |
NORDLUND E, ZHANG P, DINEVA S, et al. Impact of Fire on the Stability of Hard Rock Tunnels in Sweden[M]. Stockholm: Stiftelsen Bergteknisk Forskning-Befo, 2015.
|
[10] |
ZHANG B, TIAN H, DOU B, et al. Macroscopic and microscopic experimental research on granite properties after high-temperature and water-cooling cycles[J]. Geothermics, 2021, 93: 102079. doi: 10.1016/j.geothermics.2021.102079
|
[11] |
GLOVER P W J, BAUD P, DAROT M, et al. α/β phase transition in quartz monitored using acoustic emissions[J]. Geophysical Journal International, 1995, 120(3): 775-782. doi: 10.1111/j.1365-246X.1995.tb01852.x
|
[12] |
SIPPEL J, SIEGESMUND S, WEISS T, et al. Decay of natural stones caused by fire damage[J]. Geological Society, London, Special Publications, 2007, 271(1): 139-151. doi: 10.1144/GSL.SP.2007.271.01.15
|
[13] |
ITASCA. Universal Distinct Element Code[M]. Minneapolis: Itasca Consulting Group, Inc, 2018.
|
[14] |
WANG F. Thermal Induced Cracking of Granite: Laboratory Investigations and Numerical Simulations[D]. Germany: TU Bergakademie Freiberg, 2020.
|
[15] |
GHAZVINIAN E, DIEDERICHS M S, QUEY R. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 506-521. doi: 10.1016/j.jrmge.2014.09.001
|
[16] |
KAZERANI T, ZHAO J. Micromechanical parameters in bonded particle method for modelling of brittle material failure: micromechanical parameters in bonded particle method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(18): 1877-1895. doi: 10.1002/nag.884
|
[17] |
WANG F, KONIETZKY H, PANG R, et al. Grain-based discrete element modeling of thermo-mechanical response of granite under temperature[J]. Rock Mechanics and Rock Engineering, 2023, 56(7): 5009-5027. doi: 10.1007/s00603-023-03316-0
|
[18] |
FOURIER J B J, FREEMAN A. The Analytical Theory of Heat[M]. Cambridge: Cambridge University Press, 1878.
|
[19] |
WAPLES D W, WAPLES J S. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. part 2: fluids and porous rocks[J]. Natural Resources Research, 2004, 13(2): 123-130. doi: 10.1023/B:NARR.0000032648.15016.49
|
[20] |
WANG F, KONIETZKY H, HERBST M, et al. Mechanical responses of grain-based models considering different crystallographic spatial distributions to simulate heterogeneous rocks under loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 151: 105036. doi: 10.1016/j.ijrmms.2022.105036
|
[21] |
SORRELL C A, ANDERSON H U, ACKERMANN R J. Thermal expansion and the high-low transformation in quartz. II: dilatometric studies[J]. Journal of Applied Crystallography, 1974, 7(5): 468-473. doi: 10.1107/S0021889874010223
|
[22] |
BALDO J B, DOS SANTOS W N. Phase transitions and their effects on the thermal diffusivity behaviour of some SiO2 polymorphs[J]. Cerâmica, 2002, 48: 172-177.
|
[23] |
WANG F, KONIETZKY H, HERBST M. Thermal effect of load platen stiffness during high-temperature rock- mechanical tests[J]. Computers and Geotechnics, 2020, 126: 103721. doi: 10.1016/j.compgeo.2020.103721
|
[24] |
FAN L F, GAO J W, DU X L, et al. Spatial gradient distributions of thermal shock-induced damage to granite[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(5): 917-926. doi: 10.1016/j.jrmge.2020.05.004
|
1. |
王涛,凡红,王康任,周国庆,王亮亮. 高温冻土双屈服面统一本构模型及其验证. 岩土工程学报. 2025(01): 135-143 .
![]() | |
2. |
姚兆明,唐赛,昌语,李鹏辉. 冻结改良土抗压特性分数阶模型可靠性分析. 河南城建学院学报. 2025(01): 44-51 .
![]() | |
3. |
梁秀玲,王彬,张子浩,杨炳瑶,吴嘉骏. 考虑蠕变特性的多冷媒非均质人工冻结壁黏弹性分析. 冰川冻土. 2025(01): 163-178 .
![]() | |
4. |
谭智勇,王超林,龙安发. 外部水源作用下岩石液氮冻结试验研究. 岩土工程学报. 2024(02): 415-425 .
![]() | |
5. |
汪恩良,任志凤,王储,刘君巍,刘兴超,田野,邹猛,卢孜筱,张伟伟,姜生元. 基于灰色关联分析模拟月壤抗压强度性能试验. 吉林大学学报(工学版). 2024(07): 2015-2025 .
![]() | |
6. |
姚兆明,宋梓豪,陈军浩,左维亚. 人工冻土分数阶导数应力-应变指数模型参数确定及验证. 煤炭学报. 2024(S1): 285-294 .
![]() | |
7. |
田金博,张勇敢,鲁洋,马文鑫,刘斯宏,王柳江,刘瑾. 考虑初始饱和度影响的冻结渠坡膨胀土力学特性. 哈尔滨工业大学学报. 2024(11): 123-131 .
![]() | |
8. |
梁靖宇,沈万涛,路德春,齐吉琳. 考虑沉积角影响的冻结砂土单轴压缩试验研究. 岩土力学. 2023(04): 1065-1074 .
![]() | |
9. |
刘勤龙,李旭,姚兆明,吴永康,蔡德钩. 冻土强度特性及其主控因素综述. 冰川冻土. 2023(03): 1092-1104 .
![]() | |
10. |
宋梓豪,姚兆明. 人工冻土复合幂-指数非线性强度模型. 河南城建学院学报. 2023(05): 37-42 .
![]() | |
11. |
曾宇,白瑶,孙鹏,韩天宇. 人工冻结软黏土力学特性试验研究. 工业建筑. 2023(10): 105-111 .
![]() | |
12. |
刘铭,鲍硕超. 热-湿-应力耦合作用下框架锚杆支撑的边坡冻融特性分析. 科学技术与工程. 2023(32): 13953-13962 .
![]() | |
13. |
汪恩良,田雨,刘兴超,任志凤,胡胜博,于俊,刘承前,李宇昂. 基于WOA-BP神经网络的超低温冻土抗压强度预测模型研究. 力学学报. 2022(04): 1145-1153 .
![]() |