QIN Changbing, LI Yueyang, DAI Chenyu, SHI Yusha, ZHANG Wengang. Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 296-304. DOI: 10.11779/CJGE20230662
    Citation: QIN Changbing, LI Yueyang, DAI Chenyu, SHI Yusha, ZHANG Wengang. Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 296-304. DOI: 10.11779/CJGE20230662

    Roof stability analysis of deeply-buried cavities based on nonlinear Baker criterion

    More Information
    • Received Date: July 05, 2023
    • Available Online: July 15, 2024
    • The dynamic roof stability analysis of deeply-buried cavities is investigated by using the upper bound limit analysis method adopting a more general nonlinear Baker criterion, in contrast to the Hoek-Brown and Mohr-Coulomb criteria which are mainly applicable to rock and soil, respectively. A curved failure mechanism for roof collapse is proposed in the realm of the Baker criterion. The vertical seismic loading is considered herein. The balance equation for work rate is then established after computing the external and internal rates of work. Based on the variational principle, the upper-bound formulation for roof collapse mechanism is derived with/without considerations of the vertical earthquake effects. Accordingly, the closed-form solutions for the failure surface, collapse height and width are explicitly obtained. At the same time, the ABAQUS modelling is used to verify the robustness and validity of closed-form solutions. The parametric studies are carried out to investigate the change laws of the roof collapse mechanism under different parameters. The results indicate that apart from rock/soil properties, the upward seismic force has a significant effect on the failure region above the cavity roof.
    • [1]
      CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam; New York: Elsevier Scientific Pub. Co, 1975.
      [2]
      MICHALOWSKI R L. Slope stability analysis: a kinematical approach[J]. Géotechnique, 1995, 45(2): 283-293. doi: 10.1680/geot.1995.45.2.283
      [3]
      赵炼恒, 李亮, 杨峰, 等. 加筋土坡动态稳定性拟静力分析[J]. 岩石力学与工程学报, 2009, 28(9): 1904-1917. doi: 10.3321/j.issn:1000-6915.2009.09.023

      ZHAO Lianheng, LI Liang, YANG Feng, et al. Dynamic stability pseudo-static analysis of reinforcement soil slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1904-1917. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.09.023
      [4]
      SLOAN S W. Geotechnical stability analysis[J]. Géotechnique, 2013, 63(7): 531-571. doi: 10.1680/geot.12.RL.001
      [5]
      孙志彬, 潘秋景, 杨小礼, 等. 非均质边坡上限分析的离散机构及应用[J]. 岩石力学与工程学报, 2017, 36(7): 1680-1688.

      SUN Zhibin, PAN Qiujing, YANG Xiaoli, et al. Discrete mechanism for upper bound analysis of nonhomogeneous slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1680-1688. (in Chinese)
      [6]
      QIN C B, CHIAN S C. Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: a new perspective[J]. Géotechnique, 2018, 68(6): 492-503. doi: 10.1680/jgeot.16.P.200
      [7]
      FRALDI M, GUARRACINO F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek–Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 665-673. doi: 10.1016/j.ijrmms.2008.09.014
      [8]
      FRALDI M, GUARRACINO F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections[J]. International Journal of Solids and Structures, 2010, 47(2): 216-223. doi: 10.1016/j.ijsolstr.2009.09.028
      [9]
      FRALDI M, GUARRACINO F. Evaluation of impending collapse in circular tunnels by analytical and numerical approaches[J]. Tunnelling and Underground Space Technology, 2011, 26(4): 507-516. doi: 10.1016/j.tust.2011.03.003
      [10]
      YANG X L, QIN C B. Limit analysis of rectangular cavity subjected to seepage forces based on Hoek-Brown failure criterion[J]. Geomechanics and Engineering, 2014, 6(5): 503-515. doi: 10.12989/gae.2014.6.5.503
      [11]
      YANG X L, HUANG F. Three-dimensional failure mechanism of a rectangular cavity in a Hoek-Brown rock medium[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61: 189-195. doi: 10.1016/j.ijrmms.2013.02.014
      [12]
      QIN C B, LI Y Y, YU J, et al. Closed-form solutions for collapse mechanisms of tunnel crown in saturated non-uniform rock surrounds[J]. Tunnelling and Underground Space Technology, 2022, 126: 104529. doi: 10.1016/j.tust.2022.104529
      [13]
      BAKER R. Nonlinear Mohr envelopes based on triaxial data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 498-506. doi: 10.1061/(ASCE)1090-0241(2004)130:5(498)
      [14]
      ZHANG D B, MA Z Y, YU B, et al. Upper bound solution of surrounding rock pressure of shallow tunnel under nonlinear failure criterion[J]. Journal of Central South University, 2019, 26(7): 1696-1705. doi: 10.1007/s11771-019-4126-3
      [15]
      刘智振. 非线性Baker破坏准则下地下硐室围岩压力上限解研究[D]. 湘潭: 湖南科技大学, 2017.

      LIU Zhizhen. Study on Upper Bound Solution of Surrounding Rock Pressure in Underground Cavity under Nonlinear Baker Failure Criterion[D]. Xiangtan: Hunan University of Science and Technology, 2017. (in Chinese)
      [16]
      HOEK E, BROWN E T. Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division, 1980, 106(9): 1013-1035. doi: 10.1061/AJGEB6.0001029
      [17]
      HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown failure criterion: 2002 edition[C]// Proceedings of the North American Rock Mechanics Symposium. Toronto, 2002.
      [18]
      XU J S, YANG X L. Seismic stability analysis and charts of a 3D rock slope in Hoek-Brown media[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 64-76. doi: 10.1016/j.ijrmms.2018.10.005
      [19]
      黄阜, 杨小礼, 赵炼恒, 等. 基于Hoek-Brown破坏准则的浅埋条形锚板抗拔力上限分析[J]. 岩土力学, 2012, 33(1): 179-184, 190. doi: 10.3969/j.issn.1000-7598.2012.01.028

      HUANG Fu, YANG Xiaoli, ZHAO Lianheng, et al. Upper bound solution of ultimate pullout capacity of strip plate anchor based on Hoek-Brown failure criterion[J]. Rock and Soil Mechanics, 2012, 33(1): 179-184, 190. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.01.028
      [20]
      JIANG J C, BAKER R, YAMAGAMI T. The effect of strength envelope nonlinearity on slope stability computations[J]. Canadian Geotechnical Journal, 2003, 40(2): 308-325. doi: 10.1139/t02-111
      [21]
      LIU Z Z, CAO P, LIN H, et al. Three-dimensional upper bound limit analysis of underground cavities using nonlinear Baker failure criterion[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(7): 1916-1927. doi: 10.1016/S1003-6326(20)65350-X
      [22]
      FRALDI M, CAVUOTO R, CUTOLO A, et al. Stability of tunnels according to depth and variability of rock mass parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 222-229. doi: 10.1016/j.ijrmms.2019.05.001
    • Cited by

      Periodical cited type(13)

      1. 吕晶,赵欢,张金翼,席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能. 材料导报. 2024(07): 97-103 .
      2. 李治斌,刘利骄,黄帅,丁琳,柳艳杰. 冻结二灰固化碳酸盐渍土及损伤模型研究. 长江科学院院报. 2024(07): 118-125 .
      3. 李博,石振武,刘俊辰,张洪瑞. 复合改良黄土状亚砂土强度特性及微观机制. 硅酸盐通报. 2023(01): 373-382 .
      4. 田野. 以顶面回弹模量为目标的铁路货场地基换填方法研究. 长沙理工大学学报(自然科学版). 2023(01): 58-64 .
      5. 李治斌,苏安双,张晓东,刘利骄,刘春龙,丁琳,徐凡林,李震威. 冻融循环作用下东北盐渍土地区路基填料改良试验研究. 森林工程. 2023(02): 139-147 .
      6. 马晓武,马云峰,刘安龙,唐磊,殷珂,蓟文豪. 水泥及压实度对重塑黄土强度影响的试验研究. 公路. 2023(03): 309-315 .
      7. 唐鑫,张吾渝,何蓓,董超凡,刘成奎. 冻融循环作用下黄土动态回弹模量研究. 地下空间与工程学报. 2023(02): 456-464+485 .
      8. 徐云山,肖子龙,孙德安,陈军浩,曾召田. 土体导热系数温度效应及其预测模型. 岩土工程学报. 2023(06): 1180-1189 . 本站查看
      9. 张超,刘江鑫,顾玉辉,薛冬,宋常军,李鹏. 无机结合料处治雄安地区开槽土的路用性能研究. 工业建筑. 2023(S1): 402-406+397 .
      10. 单龙,李宏波,程银银,康鑫睿,朱一丁. 水泥-镁渣固化盐渍土力学性能实验. 中国粉体技术. 2023(05): 8-16 .
      11. 齐添,赵川,刘飞禹,何江荟. 硫酸盐渍土–混凝土界面循环剪切特性研究. 岩石力学与工程学报. 2023(S2): 4280-4288 .
      12. 郭东悦,刘浩,杨庆港,李玉豪,莘子健. 固化细粒氯盐盐渍土工程特性研究. 施工技术(中英文). 2023(22): 20-25+31 .
      13. 宋济民,常立君. 再生微粉改性盐渍土的共振柱试验研究. 青海交通科技. 2022(06): 83-91 .

      Other cited types(18)

    Catalog

      Article views (330) PDF downloads (63) Cited by(31)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return