• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BA Zhenning, ZHAO Jingxuan, SANG Qiaozhi, LIANG Jianwen. Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1387-1397. DOI: 10.11779/CJGE20230582
Citation: BA Zhenning, ZHAO Jingxuan, SANG Qiaozhi, LIANG Jianwen. Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1387-1397. DOI: 10.11779/CJGE20230582

Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method

More Information
  • Received Date: June 24, 2023
  • Available Online: July 11, 2024
  • In order to study the influences of nonlinear response of low-wave velocity soil on near-fault ground motion in three-dimensional sedimentary basin, and realize the simulation of three-dimensional complex site ground motion based on the whole process of physics (source rupture-seismic wave propagation-complex site effect-near-surface soil nonlinear response), the secondary development is carried out in the spectral element method code-SPECFEM3D. The three-parameter Martin-Seed-Davidenkov constitutive model with generous engineering applications and suitable for different soil types is adopted. Based on the existing irregular loading and unloading criteria, the real-time updating of shear modulus of soil and the effective identification of loading and unloading inflection points are realized by modifying the stress increment at each explicit time step in the code. The nonlinear characteristics of soil are incorporated into the three-dimensional complex site ground motion simulation. The established three-dimensional model is first degenerated to one-dimensional one by applying a reasonable boundary, and compared with the results of one-dimensional nonlinear dynamic analysis software DEEPSOIL to verify the correctness of the development. Furthermore, the developed code is applied to the nonlinear ground motion simulation of the Shidian Basin in southwestern Yunnan province, China, and compared with the corresponding linear results. The results show that the peak values of acceleration and velocity in Shidian area are lower than those of linear results, and the influences of nonlinear soil on PGV are more obvious, which is about 30% lower than that of linear results. The deposition nonlinearity reduces the velocity and amplitude of response spectra of the receivers inside the deposition, and the characteristic frequency moves to the long period direction.
  • [1]
    王冲, 齐文浩, 党鹏飞, 等. 基于盆地效应的抗震设防研究之若干进展[J]. 世界地震工程, 2022, 38(3): 221-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202203024.htm

    WANG Chong, QI Wenhao, DANG Pengfei, et al. Some advances in research on seismic fortification based on basin effect[J]. World Earthquake Engineering, 2022, 38(3): 221-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202203024.htm
    [2]
    WALD D J, GRAVES R W. The seismic response of the Los Angeles Basin, California[J]. Bulletin of the Seismological Society of America, 1998, 88(2): 337-356. doi: 10.1785/BSSA0880020337
    [3]
    OLSEN K B, DAY S M, MINSTER J B, et al. Strong shaking in Los Angeles expected from southern San Andreas earthquake[J]. Geophysical Research Letters, 2006, 33(7): L07305.
    [4]
    IKEGAMI Y, KOKETSU K, KIMURA T, et al. Finite-element simulations of long-period ground motions: Japanese subduction-zone earthquakes and the 1906 San Francisco earthquake[J]. Journal of Seismology, 2008, 12(2): 161-172. doi: 10.1007/s10950-008-9091-5
    [5]
    KOMATITSCH D. Simulations of ground motion in the los angeles basin based upon the spectral-element method[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 187-206. doi: 10.1785/0120030077
    [6]
    AKI K. A perspective on the history of Strong Motion Seismology[J]. Physics of the Earth and Planetary Interiors, 2003, 137(1/2/3/4): 5-11.
    [7]
    XU J F, BIELAK J, GHATTAS O, et al. Three-dimensional nonlinear seismic ground motion modeling in basins[J]. Physics of the Earth and Planetary Interiors, 2003, 137(1/2/3/4): 81-95.
    [8]
    TABORDA R, LÓPEZ J C, KARAOĞLU H, et al. Speeding up Finite Element Wave Propagation for Large-Scale Earthquake Simulations[R]. Pittsburgh: Carnegie Mellon University, 2010.
    [9]
    ROTEN D, OLSEN K B, DAY S M, et al. Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity[J]. Geophysical Research Letters, 2014, 41(8): 2769-2777. doi: 10.1002/2014GL059411
    [10]
    DUPROS F, DE MARTIN F, FOERSTER E, et al. High-performance finite-element simulations of seismic wave propagation in three-dimensional nonlinear inelastic geological media[J]. Parallel Computing, 2010, 36(5/6): 308-325.
    [11]
    FU H H, HE C H, CHEN B W, et al. 18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios[C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, 2017.
    [12]
    ESMAEILZADEH A, MOTAZEDIAN D, HUNTER J. 3D nonlinear ground-motion simulation using a physics-based method for the kinburn basin[J]. Bulletin of the Seismological Society of America, 2019: 109(4): 1282-1311.
    [13]
    CHEN Z W, HUANG D R, WANG G. Large-scale ground motion simulation of the 2016 Kumamoto earthquake incorporating soil nonlinearity and topographic effects[J]. Earthquake Engineering & Structural Dynamics, 2023, 52(4): 956-978.
    [14]
    陈国兴, 庄海洋. 基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J]. 岩土工程学报, 2005, 27(8): 860-864. doi: 10.3321/j.issn:1000-4548.2005.08.002

    CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860-864. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.08.002
    [15]
    MIAO Y, ZHONG Y, RUAN B, et al. Seismic response of a subway station in soft soil considering the structure-soil-structure interaction[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2020, 106: 103629.
    [16]
    LIN H, PAN X. Three dimensional seismic response analysis of complicated metro station with shallow depth[J]. Applied Mechanics and Materials, 2014, 638: 1905-1910.
    [17]
    MARTINP P, SEED H B. A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Deposits[R]. Berkeley: University of California, Berkeley, 1978.
    [18]
    PYKE R M. Nonlinear soil models for irregular cyclic loadings[J]. Journal of the Geotechnical Engineering Division, 1979, 105(6): 715-726. doi: 10.1061/AJGEB6.0000820
    [19]
    赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. doi: 10.11779/CJGE201705013

    ZHAO Dingfeng, RUAN Bin, CHEN Guoxing, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) doi: 10.11779/CJGE201705013
    [20]
    TONG P, CHEN C W, KOMATITSCH D, et al. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophysical Journal International, 2014, 197(1): 369-395. doi: 10.1093/gji/ggt508
    [21]
    李雪强. 沉积盆地地震效应研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2011.

    LI Xueqiang. Study on Seismic Effect of Sedimentary Basin[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2011. (in Chinese)
    [22]
    DAY S M. Memory-efficient simulation of anelastic wave propagation[J]. The Bulletin of the Seismological Society of America, 2001, 91(3): 520-531. doi: 10.1785/0120000103
    [23]
    DARENDELIM B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[M]. Austin : The University of Texas at Austin, 2001.
    [24]
    彭盛恩, 王志佳, 廖蔚茗, 等. 土的动剪切模量比和阻尼比的经验模型研究[J]. 地下空间与工程学报, 2014, 10(3): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201403013.htm

    PENG Sheng'en, WANG Zhijia, LIAO Weiming, et al. A study on empirical models of dynamic shear modulus ratio and damping ratio of soil[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(3): 566-572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201403013.htm
    [25]
    巴振宁, 赵靖轩, 张郁山, 等. 基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟[J]. 地球物理学报, 2023, 66(3): 1125-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202303020.htm

    BA Zhenning, ZHAO Jingxuan, ZHANG Yushan, et al. Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM 3D[J]. Chinese Journal of Geophysics, 2023, 66(3): 1125-1138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202303020.htm
    [26]
    曹泽林. 基于FK法的三分量宽频带强地震动场合成[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    CAO Zelin. Synthesis of Three-Component Broadband Strong Ground Motion Field Based on FK Approach[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (334) PDF downloads (64) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return