Citation: | BA Zhenning, ZHAO Jingxuan, SANG Qiaozhi, LIANG Jianwen. Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1387-1397. DOI: 10.11779/CJGE20230582 |
[1] |
王冲, 齐文浩, 党鹏飞, 等. 基于盆地效应的抗震设防研究之若干进展[J]. 世界地震工程, 2022, 38(3): 221-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202203024.htm
WANG Chong, QI Wenhao, DANG Pengfei, et al. Some advances in research on seismic fortification based on basin effect[J]. World Earthquake Engineering, 2022, 38(3): 221-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202203024.htm
|
[2] |
WALD D J, GRAVES R W. The seismic response of the Los Angeles Basin, California[J]. Bulletin of the Seismological Society of America, 1998, 88(2): 337-356. doi: 10.1785/BSSA0880020337
|
[3] |
OLSEN K B, DAY S M, MINSTER J B, et al. Strong shaking in Los Angeles expected from southern San Andreas earthquake[J]. Geophysical Research Letters, 2006, 33(7): L07305.
|
[4] |
IKEGAMI Y, KOKETSU K, KIMURA T, et al. Finite-element simulations of long-period ground motions: Japanese subduction-zone earthquakes and the 1906 San Francisco earthquake[J]. Journal of Seismology, 2008, 12(2): 161-172. doi: 10.1007/s10950-008-9091-5
|
[5] |
KOMATITSCH D. Simulations of ground motion in the los angeles basin based upon the spectral-element method[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 187-206. doi: 10.1785/0120030077
|
[6] |
AKI K. A perspective on the history of Strong Motion Seismology[J]. Physics of the Earth and Planetary Interiors, 2003, 137(1/2/3/4): 5-11.
|
[7] |
XU J F, BIELAK J, GHATTAS O, et al. Three-dimensional nonlinear seismic ground motion modeling in basins[J]. Physics of the Earth and Planetary Interiors, 2003, 137(1/2/3/4): 81-95.
|
[8] |
TABORDA R, LÓPEZ J C, KARAOĞLU H, et al. Speeding up Finite Element Wave Propagation for Large-Scale Earthquake Simulations[R]. Pittsburgh: Carnegie Mellon University, 2010.
|
[9] |
ROTEN D, OLSEN K B, DAY S M, et al. Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity[J]. Geophysical Research Letters, 2014, 41(8): 2769-2777. doi: 10.1002/2014GL059411
|
[10] |
DUPROS F, DE MARTIN F, FOERSTER E, et al. High-performance finite-element simulations of seismic wave propagation in three-dimensional nonlinear inelastic geological media[J]. Parallel Computing, 2010, 36(5/6): 308-325.
|
[11] |
FU H H, HE C H, CHEN B W, et al. 18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios[C]// Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, 2017.
|
[12] |
ESMAEILZADEH A, MOTAZEDIAN D, HUNTER J. 3D nonlinear ground-motion simulation using a physics-based method for the kinburn basin[J]. Bulletin of the Seismological Society of America, 2019: 109(4): 1282-1311.
|
[13] |
CHEN Z W, HUANG D R, WANG G. Large-scale ground motion simulation of the 2016 Kumamoto earthquake incorporating soil nonlinearity and topographic effects[J]. Earthquake Engineering & Structural Dynamics, 2023, 52(4): 956-978.
|
[14] |
陈国兴, 庄海洋. 基于Davidenkov骨架曲线的土体动力本构关系及其参数研究[J]. 岩土工程学报, 2005, 27(8): 860-864. doi: 10.3321/j.issn:1000-4548.2005.08.002
CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860-864. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.08.002
|
[15] |
MIAO Y, ZHONG Y, RUAN B, et al. Seismic response of a subway station in soft soil considering the structure-soil-structure interaction[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2020, 106: 103629.
|
[16] |
LIN H, PAN X. Three dimensional seismic response analysis of complicated metro station with shallow depth[J]. Applied Mechanics and Materials, 2014, 638: 1905-1910.
|
[17] |
MARTINP P, SEED H B. A Computer Program for the Non-Linear Analysis of Vertically Propagating Shear Waves in Horizontally Layered Deposits[R]. Berkeley: University of California, Berkeley, 1978.
|
[18] |
PYKE R M. Nonlinear soil models for irregular cyclic loadings[J]. Journal of the Geotechnical Engineering Division, 1979, 105(6): 715-726. doi: 10.1061/AJGEB6.0000820
|
[19] |
赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. doi: 10.11779/CJGE201705013
ZHAO Dingfeng, RUAN Bin, CHEN Guoxing, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) doi: 10.11779/CJGE201705013
|
[20] |
TONG P, CHEN C W, KOMATITSCH D, et al. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophysical Journal International, 2014, 197(1): 369-395. doi: 10.1093/gji/ggt508
|
[21] |
李雪强. 沉积盆地地震效应研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2011.
LI Xueqiang. Study on Seismic Effect of Sedimentary Basin[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2011. (in Chinese)
|
[22] |
DAY S M. Memory-efficient simulation of anelastic wave propagation[J]. The Bulletin of the Seismological Society of America, 2001, 91(3): 520-531. doi: 10.1785/0120000103
|
[23] |
DARENDELIM B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves[M]. Austin : The University of Texas at Austin, 2001.
|
[24] |
彭盛恩, 王志佳, 廖蔚茗, 等. 土的动剪切模量比和阻尼比的经验模型研究[J]. 地下空间与工程学报, 2014, 10(3): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201403013.htm
PENG Sheng'en, WANG Zhijia, LIAO Weiming, et al. A study on empirical models of dynamic shear modulus ratio and damping ratio of soil[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(3): 566-572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201403013.htm
|
[25] |
巴振宁, 赵靖轩, 张郁山, 等. 基于GP14.3运动学混合震源模型和SPECFEM 3D谱元法的宽频地震动模拟[J]. 地球物理学报, 2023, 66(3): 1125-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202303020.htm
BA Zhenning, ZHAO Jingxuan, ZHANG Yushan, et al. Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM 3D[J]. Chinese Journal of Geophysics, 2023, 66(3): 1125-1138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202303020.htm
|
[26] |
曹泽林. 基于FK法的三分量宽频带强地震动场合成[D]. 哈尔滨: 哈尔滨工业大学, 2020.
CAO Zelin. Synthesis of Three-Component Broadband Strong Ground Motion Field Based on FK Approach[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
|