• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yuepeng, TANG Shibin, LIU Xiangjun, WANG Peifeng, GAO Yongwei, YANG Yun, LIANG Lixi. Molecular dynamics simulation of sodium montmorillonite hydration under complex buried conditions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 599-607. DOI: 10.11779/CJGE20230443
Citation: WANG Yuepeng, TANG Shibin, LIU Xiangjun, WANG Peifeng, GAO Yongwei, YANG Yun, LIANG Lixi. Molecular dynamics simulation of sodium montmorillonite hydration under complex buried conditions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 599-607. DOI: 10.11779/CJGE20230443

Molecular dynamics simulation of sodium montmorillonite hydration under complex buried conditions

More Information
  • Received Date: May 21, 2023
  • Available Online: September 28, 2024
  • The phenomenon of rock structure disintegration caused by the hydration of clay minerals is closely related to engineering safety problems such as slope landslide, tunnel collapse and borehole collapse. In order to reveal the hydration mechanism of sodium montmorillonite under deep and complex burial conditions, molecular dynamics simulations on the hydration process of sodium montmorillonite at different burial depths were carried out by using molecular simulation techniques, verify the hydration expansion characteristics of sodium montmorillonite, and realize the quantitative analysis of key physical and chemical parameters in the hydration process. The simulation results show that with the increase of interlayer water content, the crystal layer spacing rises in a step pattern and presents a stratification phenomenon. With the increase of burial depth and interlayer water content, the volume of sodium montmorillonite increases, while the density decreases correspondingly. The increase of interlayer water content promotes the increase of hydrogen bonds, and significantly increases the self-diffusion coefficients of water molecules and Na+ ions. The self-diffusion coefficients of water molecules and Na+ ions in deep buried complex conditions are significantly higher than those at normal temperature and pressure. With the increase of water molecular layer, the main peaks of Na-Ow, Na-Hw, Ow-Hw, Ow-Ow and Os-Hw showed a tendency to gradually weaken, and the peak values of these main peaks were different under different burial depths. Simultaneous, the degree of water polymerization first increased and then decreased, the coordination number, the polymerization degree, the ionic hydration number and hydration radius of Na+ ions decreased. With the increase of burial depth, the degree of water polymerization is little different, and the hydration characteristics of Na+ ions only decrease slightly. The research results can be used to guide the theoretical analysis and engineering practice such as oil drilling, coal seam mining, slope stability evaluation and tunnel excavation.
  • [1]
    赖小玲, 叶为民, 刘毅, 等. 高庙子膨润土膨胀力时效性试验研究[J]. 岩土工程学报, 2014, 36(3): 574-579. doi: 10.11779/CJGE201403022

    LAI Xiaoling, YE Weimin, LIU Yi, et al. Experimental investigation on ageing effects on swelling pressure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 574-579. (in Chinese) doi: 10.11779/CJGE201403022
    [2]
    WANG Y P, LIU X J, LIANG L X, et al. Experimental study on the damage of organic-rich shale during water-shale interaction[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103103. doi: 10.1016/j.jngse.2019.103103
    [3]
    SUI W B, TIAN Y Y, YAO C H. Investigation of microscopic pore structure variations of shale due to hydration effects through SEM fixed-point observation experiments[J]. Petroleum Exploration and Development, 2018, 45(5): 955-962. doi: 10.1016/S1876-3804(18)30099-5
    [4]
    黄叶宁, 邓华锋, 李建林, 等. 水-岩作用下节理岩体剪切力学特性及本构模型[J]. 岩石力学与工程学报, 2023, 42(3): 545-557.

    HUANG Yening, DENG Huafeng, LI Jianlin, et al. Shear mechanical properties and constitutive model of jointed rock mass under water-rock interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 545-557. (in Chinese)
    [5]
    方沁华. 蒙脱石和高岭石的分子动力学模拟研究[D]. 北京: 北京化工大学, 2005.

    FANG Qinhua. Molecular Dynamics Simulation of Montmorillonite and Kaolinite[D]. Beijing: Beijing University of Chemical Technology, 2005. (in Chinese)
    [6]
    赵红华, 江舒棋, 葛源源, 等. 不同阳离子基蒙脱石吸附水分子的分子动力学模拟分析[J]. 中国科学: 技术科学, 2019, 49(6): 703-715.

    ZHAO Honghua, JIANG Shuqi, GE Yuanyuan, et al. Molecular dynamics simulation of water molecules adsorption by different cations based montmorillonite[J]. Scientia Sinica (Technologica), 2019, 49(6): 703-715. (in Chinese)
    [7]
    徐加放, 顾甜甜, 沈文丽, 等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版), 2016, 40(2): 83-90.

    XU Jiafang, GU Tiantian, SHEN Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2): 83-90. (in Chinese)
    [8]
    况联飞. 饱和蒙脱土高压力学特性基本机制多尺度研究[D]. 徐州: 中国矿业大学, 2013.

    KUANG Lianfei. Multi-scale Study on Basic Mechanism of Mechanical Properties of Saturated Montmorillonite under High Pressure[D]. Xuzhou: China University of Mining and Technology, 2013. (in Chinese)
    [9]
    CYGAN R T, GUGGENHEIM S, KOSTER VAN GROOS A F. Molecular models for the intercalation of methane hydrate complexes in montmorillonite clay[J]. The Journal of Physical Chemistry B, 2004, 108(39): 15141-15149. doi: 10.1021/jp037900x
    [10]
    罗亚飞. Na-蒙脱石表面水化抑制机理的分子模拟[D]. 成都: 西南石油大学, 2019.

    LUO Yafei. Molecular Simulation of Hydration Inhibition Mechanism of Na-Montmorillonite Surface[D]. Chengdu: Southwest Petroleum University, 2019. (in Chinese)
    [11]
    杨亚帆, 王建州, 商翔宇, 等. 高温下钙蒙脱石膨胀特性的分子动力学模拟[J]. 物理学报, 2022, 71(4): 48-59.

    YANG Yafan, WANG Jianzhou, SHANG Xiangyu, et al. Molecular dynamics simulation of swelling properties of Ca-montmorillonite at high temperatures[J]. Acta Physica Sinica, 2022, 71(4): 48-59. (in Chinese)
    [12]
    VIANI B E, LOW P F, ROTH C B. Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite[J]. Journal of Colloid and Interface Science, 1983, 96(1): 229-244. doi: 10.1016/0021-9797(83)90025-5
    [13]
    DE SIQUEIRA A, SKIPPER N, COVENEY P, et al. Computer simulation evidence for enthalpy driven dehydration of smectite clays at elevated pressures and temperatures[J]. Molecular Physics, 1997, 92(1): 713829279. http://www.onacademic.com/detail/journal_1000036709258210_d127.html
    [14]
    李小迪. 典型页岩抑制剂抑制蒙脱石水化机理的分子模拟[D]. 东营: 中国石油大学(华东), 2016.

    LI Xiaodi. Molecular Simulation of Mechanism of Typical Shale Inhibitors Inhibiting Montmorillonite Hydration[D]. Dongying: China University of Petroleum (Huadong), 2016. (in Chinese)
    [15]
    王进. 蒙脱石层间结构的分子力学和分子动力学模拟研究[D]. 太原: 太原理工大学, 2005.

    WANG Jin. Molecular Mechanics and Molecular Dynamics Simulation of Interlayer Structure of Montmorillonite[D]. Taiyuan: Taiyuan University of Technology, 2005. (in Chinese)
    [16]
    ZHENG Y, ZAOUI A. How water and counterions diffuse into the hydrated montmorillonite[J]. Solid State Ionics, 2011, 203(1): 80-85. http://www.onacademic.com/detail/journal_1000035085556010_b27a.html
    [17]
    CHANG F R C, SKIPPER N T, SPOSITO G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates[J]. Langmuir, 1995, 11(7): 2734-2741. doi: 10.1021/la00007a064
    [18]
    黄小娟, 徐加放, 丁廷稷, 等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺, 2017, 39(4): 442-448.

    HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Molecular simulation on the inhibition mechanism of organic amine to montmorillonite hydration[J]. Oil Drilling & Production Technology, 2017, 39(4): 442-448. (in Chinese)
  • Related Articles

    [1]Research on the Design Method for Uniform Wear of Shield Cutters in Sand–Pebble Strata[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240165
    [2]HONG Zequn, SHI Rongjian, YUE Fengtian, HAN Lei. Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700
    [3]WAN Jun-jie, CHEN Xiang-bin, YANG Yang, QIU Zhen-feng. New conductive plastic drainage board and its electro-osmosis drainage effect under double-layer horizontal layout[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2335-2340. DOI: 10.11779/CJGE202212022
    [4]ZHUANG Qian-wei, YUAN Yi-xiang, XU Tian-ming, ZHANG Chi. Simulation and experiment on cutting reinforced concrete with jet combined shield method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1817-1824. DOI: 10.11779/CJGE202010006
    [5]ZENG Chao-feng, YUAN Zhi-cheng, XUE Xiu-li. Behavior of retaining wall during dewatering before soil excavation under layout of staggered wells[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 33-36. DOI: 10.11779/CJGE2019S1009
    [6]ZHANG Zhi-guo, ZHANG Cheng-ping, XI Xiao-guang. Closed solutions to soil displacements induced by twin-tunnel excavation under different layout patterns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 262-271. DOI: 10.11779/CJGE201902003
    [7]JIANG Shui-hua, LIU Xian, YAO Rui-zhi, JIANG Qing-hui, HUANG Jin-song, ZHOU Chuang-bing. Optimization design approach for layout scheme of slope boreholes based on Bayesian updating and value of information analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1871-1879. DOI: 10.11779/CJGE201810014
    [8]QIU Zhi-qiang, GAO Ming-zhong, XIE Jing, ZHANG Zhao-peng, WANG Wen-yong. Optimization of layout pattern of underground laboratory cavern groups with buried depth of 2400 m[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 250-254. DOI: 10.11779/CJGE2016S2041
    [9]ZHANG Ai-jun, LI Lin-ke, LIU Jing-yu, YAO You-cheng, WANG Jie. Design and numerical simulation analysis of three-dimensional radiation-well drainage system for ash dams[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1685-1690.
    [10]GAO Qian, SONG Jianguo, YU Weijian, WANG Zhenghui. Design and numerical simulation of rock bolting and shotcrete for deep tunnels with high stress in Jinchuan Mine[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 279-284.
  • Cited by

    Periodical cited type(26)

    1. 刘彦浩,刘路路,刘涛,张艳,余刘成,张顶飞,战元喆. 硅灰-矿渣-电石渣协同固化黄泛区粉土力学性能与微观机理研究. 硅酸盐通报. 2025(04): 1513-1524 .
    2. 张艳林,李时臻,王东星,朱贵荣,卓师婷. 滨海地基软土碳化加固影响因素研究. 港口航道与近海工程. 2025(02): 34-40+46 .
    3. 吉俊豪,宋少民,李劭,彭天,李金君,杜若萱,赵晓娇. 利用湿法生产机制砂尾泥制备流态固化土试验研究. 粉煤灰综合利用. 2025(02): 18-24 .
    4. 仲维华. 工业废渣协同水泥固化淤泥压缩特性. 长江科学院院报. 2024(01): 121-127+135 .
    5. 张玉国,王瑞雪,陈峥昊,秦培森,杨畅,杜晓玉. 石灰-高炉矿渣改良膨胀土强度特性试验研究. 河南城建学院学报. 2024(02): 7-12 .
    6. 鹿辕,林彦军,范伟,赵洋. 多源固废基土体固化剂研发及固化机理研究. 价值工程. 2024(13): 120-122 .
    7. 张恒根,王卫华,邓声贵,何昊,刘涛. OPC-MCA固化剂对盾构废泥的固化性能及其微观作用机制研究. 中南大学学报(自然科学版). 2024(04): 1492-1508 .
    8. 胡志明,王子帅,张艳林,王东星,乔少博,卓师婷. 粉煤灰联合水泥原位固化软土现场试验研究. 中国港湾建设. 2024(05): 40-47+72 .
    9. 殷源,林康,曾卫新,程树范. 弱碱激发条件下磷渣-水泥复合填料路用性能试验研究. 硅酸盐通报. 2024(07): 2602-2611 .
    10. 金佳旭,秦志发,刘磊,万勇,王静,左胜浩. 工业固废-水泥固化腐殖土的力学响应和微观机制. 岩土工程学报. 2024(11): 2410-2419 . 本站查看
    11. 邵吉成,李送根,张旺兴,姜志全. 淤泥初始含水率及压实度对固化土强度的影响. 土木工程学报. 2024(11): 57-69 .
    12. 陈文昭,卢铎方,杨鑫宏,刘夕奇,刘俊. 硫酸盐还原菌处理的尾矿砂砂浆试块的强度特性研究. 南华大学学报(自然科学版). 2024(06): 27-35 .
    13. 王长龙,陈敬亮,杨丰豪,张高青,齐洋,荊牮霖,平浩岩,马锦涛,李鑫,翟玉新,刘枫. 钢渣-钒钛矿渣基坑回填料的制备及机理. 科学技术与工程. 2023(03): 1207-1214 .
    14. 卢立海,章寒英,邵吉成. 激发性地聚物生态固化剂的应用及材料成本分析. 水利水电技术(中英文). 2023(03): 182-192 .
    15. 何俊,管家贤,吕晓龙,张驰. 纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能. 硅酸盐通报. 2023(04): 1344-1352 .
    16. 程树范,曾亚武,高睿,张慧梅,陈世官. 基于剪切和张拉试验的水泥砂浆–黏土岩二元体界面影响区模型. 岩石力学与工程学报. 2023(04): 964-975 .
    17. 万颖君,朱晓珍,宋德威,李怡玮,孙阳,姚森. 不同外加剂改性水泥土强度特性及细观结构分析. 河南科学. 2023(05): 705-711 .
    18. 许炜炜. 利用工业废渣生产高档建筑陶瓷材料. 佛山陶瓷. 2023(07): 40-41+70 .
    19. 陈文昭,唐之博,王东星,刘夕奇. 海水侵蚀对水泥土强度的影响与数值模拟. 中国粉体技术. 2023(05): 112-124 .
    20. 蔡如龙,陈三姗,张华鑫,王淑琪,陈威震. 侵蚀环境下镍铁渣粉水泥土的研究进展. 四川建材. 2023(11): 4-5+13 .
    21. 厉帅康,俞峰,陈鑫,余静. 水泥-矿渣基早强固化剂制备及固化土宏微观性能研究. 硅酸盐通报. 2023(11): 3964-3977+4005 .
    22. 李永靖,文成章,王松,程耀辉,郝稳杰. CLFD-TS协同固化云母片岩强风化土性能试验研究. 长江科学院院报. 2023(12): 88-95 .
    23. 张琬昕,杜晓丽,徐凤旺,葛单单,邹天民. 新型CG-SF固化土的力学特性研究. 重庆科技学院学报(自然科学版). 2022(03): 84-89+94 .
    24. 晁军. 碱渣-石膏-水泥联合固化粉土的力学特性及微观机理研究. 粉煤灰综合利用. 2022(04): 98-105 .
    25. 李光耀,张振,叶观宝,单卫良,舒欢. 新型土体固化剂加固海底淤泥力学特性研究. 水文地质工程地质. 2022(05): 106-111 .
    26. 张丹,吴振威,宋苗苗,徐桂中,邱成春,曹裕翔. 盐分侵蚀对水泥固化土力学特性的影响研究. 土木工程与管理学报. 2022(05): 94-99 .

    Other cited types(21)

Catalog

    Article views PDF downloads Cited by(47)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return