Citation: | HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367 |
[1] |
赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. doi: 10.11779/CJGE202106018
ZHAO Guitao, HAN Zhong, ZOU Weilie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. (in Chinese) doi: 10.11779/CJGE202106018
|
[2] |
廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.
LIAO Shiwen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
|
[3] |
SRIDHARAN A, GURTUG Y. Compressibility characteristics of soils[J]. Geotechnical & Geological Engineering, 2005, 23(5): 615-634.
|
[4] |
ZOU W L, HAN Z, VANAPALLI S K, et al. Predicting volumetric behavior of compacted clays during compression[J]. Applied Clay Science, 2018, 156: 116-125. doi: 10.1016/j.clay.2018.01.036
|
[5] |
GENS A. Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74. doi: 10.1680/geot.9.P.109
|
[6] |
TRIPATHY S, SUBBA RAO K S. Cyclic swell-shrink behaviour of a compacted expansive soil[J]. Geotechnical and Geological Engineering, 2009, 27(1): 89-103. doi: 10.1007/s10706-008-9214-3
|
[7] |
AJDARI M, HABIBAGAHI G, MASROURI F. The role of suction and degree of saturation on the hydro-mechanical response of a dual porosity silt-bentonite mixture[J]. Applied Clay Science, 2013, 83: 83-90. http://www.xueshufan.com/publication/2050023891
|
[8] |
ALONSO E E, PINYOL N M, GENS A. Compacted soil behaviour: initial state, structure and constitutive modelling[J]. Géotechnique, 2013, 63(6): 463-478. doi: 10.1680/geot.11.P.134
|
[9] |
HAN Z, VANAPALLI S K, ZOU W L, et al. Modelling virgin compression line of compacted unsaturated soils[J]. Acta Geotechnica, 2019, 14(6): 1991-2006. doi: 10.1007/s11440-019-00767-0
|
[10] |
JOTISANKASA A, RIDLEY A, COOP M. Collapse behavior of compacted silty clay in suction-monitored oedometer apparatus[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 867-877. doi: 10.1061/(ASCE)1090-0241(2007)133:7(867)
|
[11] |
MONROY R, ZDRAVKOVIC L, RIDLEY A M. Mechanical behaviour of unsaturated expansive clay under K0 conditions[J]. Engineering Geology, 2015, 197: 112-131. doi: 10.1016/j.enggeo.2015.08.006
|
[12] |
BURTON G J, PINEDA J A, SHENG D, et al. Exploring one-dimensional compression of compacted clay under constant degree of saturation paths[J]. Géotechnique, 2016, 66(5): 435-440. doi: 10.1680/jgeot.14.P.181
|
[13] |
BURTON G J, SHENG D C, AIREY D. Experimental study on volumetric behaviour of Maryland clay and the role of degree of saturation[J]. Canadian Geotechnical Journal, 2014, 51(12): 1449-1455. doi: 10.1139/cgj-2013-0332
|
[14] |
ZHOU A N, SHENG D C, SLOAN S W, et al. Interpretation of unsaturated soil behaviour in the stress-saturation space, Ⅰ: volume change and water retention behaviour[J]. Computers and Geotechnics, 2012, 43: 178-187. doi: 10.1016/j.compgeo.2012.04.010
|
[15] |
SHENG D C. Review of fundamental principles in modelling unsaturated soil behaviour[J]. Computers and Geotechnics, 2011, 38(6): 757-776. doi: 10.1016/j.compgeo.2011.05.002
|
[16] |
程培峰, 王佳康. 冻融循环对原状过湿土固结变形特性的影响[J]. 冰川冻土, 2019, 41(4): 858-864.
CHENG Peifeng, WANG Jiakang. Effect of freezing-thawing cycles on consolidation deformation characteristics of natural over-wet soil[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 858-864. (in Chinese)
|
[17] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[18] |
LU Y, LIU S H, WENG L P, et al. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles[J]. Engineering Geology, 2016, 208: 93-99. doi: 10.1016/j.enggeo.2016.04.023
|
[19] |
DING L Q, HAN Z, ZOU W L, et al. Characterizing hydro-mechanical behaviours of compacted subgrade soils considering effects of freeze-thaw cycles[J]. Transportation Geotechnics, 2020, 24: 100392. doi: 10.1016/j.trgeo.2020.100392
|
[20] |
非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 中国建筑工业出版社, 2023.
Standard for Unsaturated Soil Testing Method: T/CECS 1337—2023[S]. Beijing: China Architecture & Building Press, 2023. (in Chinese)
|
[21] |
ZHANG F, CUI Y J, YE W M. Distinguishing macro- and micro-pores for materials with different pore populations[J]. Géotechnique, 2018, 8(2): 102-110. doi: 10.1680/jgele.17.00144
|
[22] |
SASANIAN S, NEWSON T A. Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents[J]. Engineering Geology, 2013, 158: 15-22. doi: 10.1016/j.enggeo.2013.03.002
|
[23] |
CASAGRANDE A. The determination of the precon-solidation load and its practical significance[J]. Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, 1936, 3: 60-64.
|
[24] |
CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2006, 57(2): 258-268. doi: 10.1111/j.1365-2389.2005.00739.x
|