• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367
Citation: HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367

Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils

More Information
  • Received Date: April 25, 2023
  • Available Online: August 19, 2024
  • Through the experimental and theoretical studies, the effects of humidity and freeze-thaw (FT) cycles on the compression and pore structure characteristics of a compacted expansive soil have been investigated. The compacted specimens are equilibrated to different moisture contents and then subjected to the FT cycles and saturation process. The constant water content compression tests and consolidation tests are conducted to determine the compression curves for unsaturated and saturated specimens, respectively. The mercury intrusion porosimetry tests are performed to determine the pore structure characteristics of the soil. The experimental results indicate that: (1) Within the elastic range, the recompression index (Ce) is insensitive to the moisture content but increases significantly after the FT cycles. (2) Within the elastoplastic range, the preconsolidation pressure increases while the compression index (Cc) decreases as the moisture content decreases. Both the preconsolidation pressure and Cc decrease after the FT cycles. (3) Under different humidity and FT conditions, there exists a unique linear relationship between Ce and the void ratio of macropores (el) and a unique relationship between Cc and mesoscopic parameter that is composed of el, void ratio of medium pores (em) and humidity conditions. Based on the test results, a model is proposed to describe the compression curves of expansive soils considering the effects of humidity and FT cycles. The model is found to be capable of suitably describing the void ratio-stress-moisture content relationships for compacted expansive soils.
  • [1]
    赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. doi: 10.11779/CJGE202106018

    ZHAO Guitao, HAN Zhong, ZOU Weilie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. (in Chinese) doi: 10.11779/CJGE202106018
    [2]
    廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.

    LIAO Shiwen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
    [3]
    SRIDHARAN A, GURTUG Y. Compressibility characteristics of soils[J]. Geotechnical & Geological Engineering, 2005, 23(5): 615-634.
    [4]
    ZOU W L, HAN Z, VANAPALLI S K, et al. Predicting volumetric behavior of compacted clays during compression[J]. Applied Clay Science, 2018, 156: 116-125. doi: 10.1016/j.clay.2018.01.036
    [5]
    GENS A. Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74. doi: 10.1680/geot.9.P.109
    [6]
    TRIPATHY S, SUBBA RAO K S. Cyclic swell-shrink behaviour of a compacted expansive soil[J]. Geotechnical and Geological Engineering, 2009, 27(1): 89-103. doi: 10.1007/s10706-008-9214-3
    [7]
    AJDARI M, HABIBAGAHI G, MASROURI F. The role of suction and degree of saturation on the hydro-mechanical response of a dual porosity silt-bentonite mixture[J]. Applied Clay Science, 2013, 83: 83-90. http://www.xueshufan.com/publication/2050023891
    [8]
    ALONSO E E, PINYOL N M, GENS A. Compacted soil behaviour: initial state, structure and constitutive modelling[J]. Géotechnique, 2013, 63(6): 463-478. doi: 10.1680/geot.11.P.134
    [9]
    HAN Z, VANAPALLI S K, ZOU W L, et al. Modelling virgin compression line of compacted unsaturated soils[J]. Acta Geotechnica, 2019, 14(6): 1991-2006. doi: 10.1007/s11440-019-00767-0
    [10]
    JOTISANKASA A, RIDLEY A, COOP M. Collapse behavior of compacted silty clay in suction-monitored oedometer apparatus[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 867-877. doi: 10.1061/(ASCE)1090-0241(2007)133:7(867)
    [11]
    MONROY R, ZDRAVKOVIC L, RIDLEY A M. Mechanical behaviour of unsaturated expansive clay under K0 conditions[J]. Engineering Geology, 2015, 197: 112-131. doi: 10.1016/j.enggeo.2015.08.006
    [12]
    BURTON G J, PINEDA J A, SHENG D, et al. Exploring one-dimensional compression of compacted clay under constant degree of saturation paths[J]. Géotechnique, 2016, 66(5): 435-440. doi: 10.1680/jgeot.14.P.181
    [13]
    BURTON G J, SHENG D C, AIREY D. Experimental study on volumetric behaviour of Maryland clay and the role of degree of saturation[J]. Canadian Geotechnical Journal, 2014, 51(12): 1449-1455. doi: 10.1139/cgj-2013-0332
    [14]
    ZHOU A N, SHENG D C, SLOAN S W, et al. Interpretation of unsaturated soil behaviour in the stress-saturation space, Ⅰ: volume change and water retention behaviour[J]. Computers and Geotechnics, 2012, 43: 178-187. doi: 10.1016/j.compgeo.2012.04.010
    [15]
    SHENG D C. Review of fundamental principles in modelling unsaturated soil behaviour[J]. Computers and Geotechnics, 2011, 38(6): 757-776. doi: 10.1016/j.compgeo.2011.05.002
    [16]
    程培峰, 王佳康. 冻融循环对原状过湿土固结变形特性的影响[J]. 冰川冻土, 2019, 41(4): 858-864.

    CHENG Peifeng, WANG Jiakang. Effect of freezing-thawing cycles on consolidation deformation characteristics of natural over-wet soil[J]. Journal of Glaciology and Geocryology, 2019, 41(4): 858-864. (in Chinese)
    [17]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [18]
    LU Y, LIU S H, WENG L P, et al. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles[J]. Engineering Geology, 2016, 208: 93-99. doi: 10.1016/j.enggeo.2016.04.023
    [19]
    DING L Q, HAN Z, ZOU W L, et al. Characterizing hydro-mechanical behaviours of compacted subgrade soils considering effects of freeze-thaw cycles[J]. Transportation Geotechnics, 2020, 24: 100392. doi: 10.1016/j.trgeo.2020.100392
    [20]
    非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 中国建筑工业出版社, 2023.

    Standard for Unsaturated Soil Testing Method: T/CECS 1337—2023[S]. Beijing: China Architecture & Building Press, 2023. (in Chinese)
    [21]
    ZHANG F, CUI Y J, YE W M. Distinguishing macro- and micro-pores for materials with different pore populations[J]. Géotechnique, 2018, 8(2): 102-110. doi: 10.1680/jgele.17.00144
    [22]
    SASANIAN S, NEWSON T A. Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents[J]. Engineering Geology, 2013, 158: 15-22. doi: 10.1016/j.enggeo.2013.03.002
    [23]
    CASAGRANDE A. The determination of the precon-solidation load and its practical significance[J]. Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, 1936, 3: 60-64.
    [24]
    CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2006, 57(2): 258-268. doi: 10.1111/j.1365-2389.2005.00739.x

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return