Citation: | YANG Songsong, ZHANG Dingwen, ZENG Biao, ZHANG Aijun, CHENG Chaoheng, HE Ling. Full-scale tests on horizontal cyclic bearing capacity of cement-soil-improved piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1453-1461. DOI: 10.11779/CJGE20230317 |
[1] |
王青桥, 韦晓, 王君杰. 桥梁桩基震害特点及其破坏机理[J]. 震灾防御技术, 2009, 4(2): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200902007.htm
WANG Qingqiao, WEI Xiao, WANG Junjie. Characteristics and mechanisms of earthquake damage of bridge pile foundation[J]. Technology for Earthquake Disaster Prevention, 2009, 4(2): 167-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200902007.htm
|
[2] |
许成顺, 豆鹏飞, 杜修力, 等. 液化场地-群桩基础-结构体系动力响应分析: 大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. doi: 10.11779/CJGE201912001
XU Chengshun, DOU Pengfei, DU Xiuli, et al. Dynamic response analysis of liquefied site-pile group foundation-structure system: large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. (in Chinese) doi: 10.11779/CJGE201912001
|
[3] |
王睿, 张建民, 张嘎. 液化地基侧向流动引起的桩基础破坏分析[J]. 岩土力学, 2011, 32(增刊1): 501-506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1090.htm
WANG Rui, ZHANG Jianmin, ZHANG Ga. Analysis of failure of piled foundation due to lateral spreading in liquefied soils[J]. Rock and Soil Mechanics, 2011, 32(S1): 501-506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1090.htm
|
[4] |
ZHUANG H Y, FU J S, YU X, et al. Earthquake responses of a base-isolated structure on a multi-layered soft soil foundation by using shaking table tests[J]. Engineering Structures, 2019, 179: 79-91. doi: 10.1016/j.engstruct.2018.10.060
|
[5] |
陈正. 液化土中高桩基础水平动力阻抗分析[D]. 杭州: 浙江大学, 2022.
CHEN Zheng. Analysis of Horizontal Dynamic Impedance of Elevated Piles in Liquefied Soil [D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
|
[6] |
FINN W D L, FUJITA N. Piles in liquefiable soils: seismic analysis and design issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 731-742.
|
[7] |
KITAZUME M, MARUYAMA K. External stability of group column type deep mixing improved ground under embankment loading[J]. Soils and Foundations, 2006, 46(3): 323-340. doi: 10.3208/sandf.46.323
|
[8] |
TOKIMATSU K, MIZUNO H, KAKURAI M. Building damage associated with geotechnical problems[J]. Soils and Foundations, 1996, 36: 219-234. doi: 10.3208/sandf.36.Special_219
|
[9] |
DEHGHANBANADAKI A, AHMAD K, ALI N. Experimental investigations on ultimate bearing capacity of peat stabilized by a group of soil–cement column: a comparative study[J]. Acta Geotechnica, 2016, 11(2): 295-307. doi: 10.1007/s11440-014-0328-x
|
[10] |
ZHANG F, OKA R, MORIKAWA Y, et al. Shaking table test on superstructure-foundation-ground system in liquefiable soil and its numerical verification[J]. Geotechnical Engineering: Journal of Southeast Asian Geotechnical Society, 2014, 45(2): 294-206.
|
[11] |
ZHANG D W, WANG A H, DING X M. Seismic response of pile groups improved with deep cement mixing columns in liquefiable sand: shaking table tests[J]. Canadian Geotechnical Journal, 2022, 59(6): 994-1006. doi: 10.1139/cgj-2020-0505
|
[12] |
LIU C Y, SOLTANI H, MURALEETHARAN K K, et al. Cyclic and seismic response of single piles in improved and unimproved soft clays[J]. Acta Geotechnica, 2016, 11(6): 1431-1444. doi: 10.1007/s11440-016-0504-2
|
[13] |
FLEMING B J, SRITHARAN S, MILLER G A, et al. Full-scale seismic testing of piles in improved and unimproved soft clay[J]. Earthquake Spectra, 2016, 32(1): 239-265. doi: 10.1193/012714EQS018M
|
[14] |
许成顺, 贾科敏, 杜修力, 等. 液化侧向扩展场地-桩基础抗震研究综述[J]. 防灾减灾工程学报, 2021, 41(4): 768-791. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202104009.htm
XU Chengshun, JIA Kemin, DU Xiuli, et al. Review on seismic behavior of pile foundation subjected to liquefaction induced lateral spreading[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(4): 768-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202104009.htm
|
[15] |
建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.
Specification for Seismic Test of Buildings: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
|
[16] |
建筑桩基技术规范: JGJ 94—2008[S]. 北京: 中国建筑工业出版社, 2008.
Technical Code for Building Pile Foundations: JGJ 94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese).
|
[17] |
刘畅, 刘彦坡, 郑刚, 等. 软土地区钻孔灌注桩抗震性能试验研究[J]. 岩土工程学报, 2018, 40(2): 360-369. doi: 10.11779/CJGE201802018
LIU Chang, LIU Yanpo, ZHENG Gang, et al. Experimental study on seismic behavior of bored cast-in-situ pile in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 360-369. (in Chinese) doi: 10.11779/CJGE201802018
|
[18] |
王安辉. 软弱地层中劲芯复合桩的水平承载性状与抗震性能研究[D]. 南京: 东南大学, 2020.
WANG Anhui. Study on Horizontal Bearing Behavior and Seismic Performance of Stiffened Composite Piles in Weak Strata[D]. Nanjing: Southeast University, 2020. (in Chinese)
|
[19] |
李忠献. 工程结构试验理论与技术[M]. 天津: 天津大学出版社, 2004: 229-231.
LI Zhongxian. Theory and Technique of Engineering Structure Experiments[M]. Tianjin: Tianjin University Press, 2004: 229-231. (in Chinese)
|
[20] |
栾阳. 地震作用下桥梁桩箱复合基础振动台试验与动力分析[D]. 南京: 东南大学, 2021.
LUAN Yang. Dynamic Analysis of Bridge Unconnected Piles-Caisson Foundation Using Shake Table Tests[D]. Nanjing: Southeast University, 2021. (in Chinese)
|