• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Songsong, ZHANG Dingwen, ZENG Biao, ZHANG Aijun, CHENG Chaoheng, HE Ling. Full-scale tests on horizontal cyclic bearing capacity of cement-soil-improved piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1453-1461. DOI: 10.11779/CJGE20230317
Citation: YANG Songsong, ZHANG Dingwen, ZENG Biao, ZHANG Aijun, CHENG Chaoheng, HE Ling. Full-scale tests on horizontal cyclic bearing capacity of cement-soil-improved piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1453-1461. DOI: 10.11779/CJGE20230317

Full-scale tests on horizontal cyclic bearing capacity of cement-soil-improved piles

More Information
  • Received Date: April 11, 2023
  • Available Online: October 23, 2023
  • The cement-soil mixing columns are used to improve the surrounding soils of drilled cast-in-place piles in a typical saturated silt site in Suqian City. The full-scale horizontal cyclic loading tests on the cast-in-place piles on site are conducted. The hysteresis characteristics, bending moment, stiffness degradation, displacement ductility, horizontal bearing capacity and residual deformation capacity of test piles in improved soil (TPI) and those in unimproved soil (TPU) under horizontal cyclic loading are explored. The test results show that the bending moment of TPI piles decreases by 47% and the yield displacement decreases by 41% compared to those of TPU piles. The horizontal bearing capacity of TPI piles increases by 150%, the effective stiffness increases by 240%, and the equivalent viscous damping ratio increases by 233%. The cracking load of the piles increases by 150%, and the residual deformation capacity of the piles during the yield load stage decreases by 17%. The cement-soil mixing method can limit the liquefaction of silt at pile side, increase the energy consumption and displacement ductility of pile foundation, and significantly reduce the development of horizontal displacement and bending moment of pile head. From the perspective of seismic performance, strengthening the existing pile foundations with cement-soil mixing piles can effectively suppress the stiffness attenuation of the foundation soils within the reinforcement range. The cement-soil-reinforced piles enhance the total energy consumption, equivalent viscous damping coefficient and deformation recovery capability of the pile-soil structure. Therefore, the seismic performance of pile foundations during large deformation is improved.
  • [1]
    王青桥, 韦晓, 王君杰. 桥梁桩基震害特点及其破坏机理[J]. 震灾防御技术, 2009, 4(2): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200902007.htm

    WANG Qingqiao, WEI Xiao, WANG Junjie. Characteristics and mechanisms of earthquake damage of bridge pile foundation[J]. Technology for Earthquake Disaster Prevention, 2009, 4(2): 167-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200902007.htm
    [2]
    许成顺, 豆鹏飞, 杜修力, 等. 液化场地-群桩基础-结构体系动力响应分析: 大型振动台模型试验研究[J]. 岩土工程学报, 2019, 41(12): 2173-2181. doi: 10.11779/CJGE201912001

    XU Chengshun, DOU Pengfei, DU Xiuli, et al. Dynamic response analysis of liquefied site-pile group foundation-structure system: large-scale shaking table model test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2173-2181. (in Chinese) doi: 10.11779/CJGE201912001
    [3]
    王睿, 张建民, 张嘎. 液化地基侧向流动引起的桩基础破坏分析[J]. 岩土力学, 2011, 32(增刊1): 501-506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1090.htm

    WANG Rui, ZHANG Jianmin, ZHANG Ga. Analysis of failure of piled foundation due to lateral spreading in liquefied soils[J]. Rock and Soil Mechanics, 2011, 32(S1): 501-506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1090.htm
    [4]
    ZHUANG H Y, FU J S, YU X, et al. Earthquake responses of a base-isolated structure on a multi-layered soft soil foundation by using shaking table tests[J]. Engineering Structures, 2019, 179: 79-91. doi: 10.1016/j.engstruct.2018.10.060
    [5]
    陈正. 液化土中高桩基础水平动力阻抗分析[D]. 杭州: 浙江大学, 2022.

    CHEN Zheng. Analysis of Horizontal Dynamic Impedance of Elevated Piles in Liquefied Soil [D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
    [6]
    FINN W D L, FUJITA N. Piles in liquefiable soils: seismic analysis and design issues[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 731-742.
    [7]
    KITAZUME M, MARUYAMA K. External stability of group column type deep mixing improved ground under embankment loading[J]. Soils and Foundations, 2006, 46(3): 323-340. doi: 10.3208/sandf.46.323
    [8]
    TOKIMATSU K, MIZUNO H, KAKURAI M. Building damage associated with geotechnical problems[J]. Soils and Foundations, 1996, 36: 219-234. doi: 10.3208/sandf.36.Special_219
    [9]
    DEHGHANBANADAKI A, AHMAD K, ALI N. Experimental investigations on ultimate bearing capacity of peat stabilized by a group of soil–cement column: a comparative study[J]. Acta Geotechnica, 2016, 11(2): 295-307. doi: 10.1007/s11440-014-0328-x
    [10]
    ZHANG F, OKA R, MORIKAWA Y, et al. Shaking table test on superstructure-foundation-ground system in liquefiable soil and its numerical verification[J]. Geotechnical Engineering: Journal of Southeast Asian Geotechnical Society, 2014, 45(2): 294-206.
    [11]
    ZHANG D W, WANG A H, DING X M. Seismic response of pile groups improved with deep cement mixing columns in liquefiable sand: shaking table tests[J]. Canadian Geotechnical Journal, 2022, 59(6): 994-1006. doi: 10.1139/cgj-2020-0505
    [12]
    LIU C Y, SOLTANI H, MURALEETHARAN K K, et al. Cyclic and seismic response of single piles in improved and unimproved soft clays[J]. Acta Geotechnica, 2016, 11(6): 1431-1444. doi: 10.1007/s11440-016-0504-2
    [13]
    FLEMING B J, SRITHARAN S, MILLER G A, et al. Full-scale seismic testing of piles in improved and unimproved soft clay[J]. Earthquake Spectra, 2016, 32(1): 239-265. doi: 10.1193/012714EQS018M
    [14]
    许成顺, 贾科敏, 杜修力, 等. 液化侧向扩展场地-桩基础抗震研究综述[J]. 防灾减灾工程学报, 2021, 41(4): 768-791. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202104009.htm

    XU Chengshun, JIA Kemin, DU Xiuli, et al. Review on seismic behavior of pile foundation subjected to liquefaction induced lateral spreading[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(4): 768-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202104009.htm
    [15]
    建筑抗震试验规程: JGJ/T 101—2015[S]. 北京: 中国建筑工业出版社, 2015.

    Specification for Seismic Test of Buildings: JGJ/T 101—2015[S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [16]
    建筑桩基技术规范: JGJ 94—2008[S]. 北京: 中国建筑工业出版社, 2008.

    Technical Code for Building Pile Foundations: JGJ 94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese).
    [17]
    刘畅, 刘彦坡, 郑刚, 等. 软土地区钻孔灌注桩抗震性能试验研究[J]. 岩土工程学报, 2018, 40(2): 360-369. doi: 10.11779/CJGE201802018

    LIU Chang, LIU Yanpo, ZHENG Gang, et al. Experimental study on seismic behavior of bored cast-in-situ pile in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 360-369. (in Chinese) doi: 10.11779/CJGE201802018
    [18]
    王安辉. 软弱地层中劲芯复合桩的水平承载性状与抗震性能研究[D]. 南京: 东南大学, 2020.

    WANG Anhui. Study on Horizontal Bearing Behavior and Seismic Performance of Stiffened Composite Piles in Weak Strata[D]. Nanjing: Southeast University, 2020. (in Chinese)
    [19]
    李忠献. 工程结构试验理论与技术[M]. 天津: 天津大学出版社, 2004: 229-231.

    LI Zhongxian. Theory and Technique of Engineering Structure Experiments[M]. Tianjin: Tianjin University Press, 2004: 229-231. (in Chinese)
    [20]
    栾阳. 地震作用下桥梁桩箱复合基础振动台试验与动力分析[D]. 南京: 东南大学, 2021.

    LUAN Yang. Dynamic Analysis of Bridge Unconnected Piles-Caisson Foundation Using Shake Table Tests[D]. Nanjing: Southeast University, 2021. (in Chinese)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return