• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Rui, BAI Bing, YANG Guangchang. Thermodynamic model of coupled temperature and pressure effects for hydrate-bearing sediments within particle rearrangement theory[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1226-1235. DOI: 10.11779/CJGE20230246
Citation: ZHOU Rui, BAI Bing, YANG Guangchang. Thermodynamic model of coupled temperature and pressure effects for hydrate-bearing sediments within particle rearrangement theory[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1226-1235. DOI: 10.11779/CJGE20230246

Thermodynamic model of coupled temperature and pressure effects for hydrate-bearing sediments within particle rearrangement theory

More Information
  • Received Date: March 21, 2023
  • Available Online: June 04, 2024
  • The mechanical properties of hydrate-bearing sediments are significantly influenced by changes in temperature and water pressure. Based on the particle rearrangement theory, a thermodynamic model that couples temperature and pressure, incorporating the dilation equation considering the effects of hydrate saturation and introducing the bond degradation parameters caused by shear and volumetric strains, is developed to describe the mechanical behaviors of hydrate-bearing sediments. The numerical simulation results are compared with the laboratory experiments to explore the effects of confining pressure, hydrate saturation and the temperature-pressure coupling coefficient on the mechanical properties of sediments from both macroscopic and microscopic perspectives. Finally, the sensitivity analyses are conducted on the stiffness coefficient and bond degradation parameter. The results indicate that the introduction of a temperature-pressure coupling coefficient in the model effectively describes the relationship between the mechanical properties of sediments and temperature and water pressure during deposition. Decreasing environmental temperature and increasing water pressure enhance the bond strength and stiffness of hydrates at the microscopic level, resulting in the increased peak strength, strain softening and shear dilation at the macroscopic level. Increasing the stiffness coefficient γ enhances the peak strength of sediments by increasing the initial stiffness of sediments. The bond degradation parameter enhances the strain-softening behaviors of sediments by increasing the rate of bond degradation.
  • [1]
    INADA N, YAMAMOTO K. Data report: hybrid pressure coring system tool review and summary of recovery result from gas-hydrate related coring in the Nankai Project[J]. Marine and Petroleum Geology, 2015, 66: 323-345. doi: 10.1016/j.marpetgeo.2015.02.023
    [2]
    MAKOGON Y F. Natural gas hydrates—a promising source of energy[J]. Journal of Natural Gas Science and Engineering, 2010, 2(1): 49-59. doi: 10.1016/j.jngse.2009.12.004
    [3]
    颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240. http://cge.nhri.cn/cn/article/id/14631

    YAN Rongtao, WEI Changfu, WEI Houzhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234-1240. (in Chinese) http://cge.nhri.cn/cn/article/id/14631
    [4]
    刘昌岭, 李彦龙, 孙建业, 等. 天然气水合物试采: 从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12-26. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201805001.htm

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 12-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201805001.htm
    [5]
    王维希, 张春生, 吴颜雄, 等. 联合深海地热开采天然气水合物技术展望[J]. 现代化工, 2021, 41(9): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202109004.htm

    WANG Weixi, ZHANG Chunsheng, WU Yanxiong, et al. Prospects on technology for combining deep-sea geothermal energy with exploitation of natural gas hydrate[J]. Modern Chemical Industry, 2021, 41(9): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202109004.htm
    [6]
    WU P, LI Y H, LIU W G, SUN X, KONG X J, SONG Y C. Cementation failure behavior of consolidated gas hydrate-bearing sand[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018623. doi: 10.1029/2019JB018623
    [7]
    LUO T T, LI Y H, MADHUSUDHAN B N, et al. Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery[J]. Applied Energy, 2020, 276: 115468. doi: 10.1016/j.apenergy.2020.115468
    [8]
    MASUI A, MIYAZAKI K, HANEDA H, OGATA Y, AOKI K. Mechanical properties of natural gas hydrate bearing sediments retrieved from eastern Nankai trough[C]//Offshore Technology Conference. Houston, 2008.
    [9]
    LI Y H, SONG Y C, LIU W G, et al. Analysis of mechanical properties and strength criteria of methane hydrate-bearing sediments[J]. International Journal of Offshore and Polar Engineering, 2012, 22: 290-296.
    [10]
    SHEN S, SUN X, WANG L, et al. Effect of temperature on the mechanical properties of hydrate-bearing sand under different confining pressures[J]. Energy & Fuels, 2021, 35: 4106-4117.
    [11]
    HYODO M, NAKATA Y, YOSHIMOTO N, et al. Basic research on the mechanical behavior of methane hydrate-sediments mixture[J]. Soils and Foundations, 2005, 45(1): 75-85.
    [12]
    WINTERS W J, WAITE W F, MASON D H, et al. Methane gas hydrate effect on sediment acoustic and strength properties[J]. Journal of Petroleum Science and Engineering, 2007, 56(1/2/3): 127-135.
    [13]
    CHAOUACHI M, FALENTY A, SELL K, et al. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 1711-1722. doi: 10.1002/2015GC005811
    [14]
    TOKUNAGA T. Physicochemical controls on adsorbed water film thickness in unsaturated geological media[J]. Water Resources Research, 2011, 47(8): W08514.
    [15]
    蒋明镜, 朱方园. 不同温压环境下深海能源土力学特性离散元分析[J]. 岩土工程学报, 2014, 36(10): 1761-1769. doi: 10.11779/CJGE201410001

    JIANG Mingjing, ZHU Fangyuan. DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1761-1769. (in Chinese) doi: 10.11779/CJGE201410001
    [16]
    颜荣涛, 张炳晖, 杨德欢, 等. 不同温-压条件下含水合物沉积物的损伤本构关系[J]. 岩土力学, 2018, 39(12): 4421-4428. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812016.htm

    YAN Rongtao, ZHANG Binghui, YANG Dehuan, et al. Damage constitutive model for hydrate-bearing sediment under different temperature and pore pressure conditions[J]. Rock and Soil Mechanics, 2018, 39(12): 4421-4428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812016.htm
    [17]
    刘乐乐, 张旭辉, 刘昌岭, 等. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm

    LIU Lele, ZHANG Xuhui, LIU Changling, et al. Triaxial shear tests and statistical analyses of damage for methane hydrate-bearing sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm
    [18]
    YAMAGUCHI T, AOKI K, TENMA N, et al. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J]. Energies, 2012, 5(10): 4057-4075. doi: 10.3390/en5104057
    [19]
    UCHIDA S, SOGA K, YAMAMOTO K. Critical state soil constitutive model for methane hydrate soil[J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B03209.
    [20]
    SÁNCHEZ M, GAI X R, SANTAMARINA J C. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms[J]. Computers and Geotechnics, 2017, 84: 28-46. doi: 10.1016/j.compgeo.2016.11.012
    [21]
    YANG G C, BAI B, LIU Y, et al. Constitutive modeling for undrained shear behavior of gassy sand considering energy dissipation at the mesoscopic level[J]. Ocean Engineering, 2021, 219: 108307. doi: 10.1016/j.oceaneng.2020.108307
    [22]
    BAI B, ZHOU R, CAI G Q, et al. Coupled thermo- hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics[J]. Computers and Geotechnics, 2021, 137: 104272. doi: 10.1016/j.compgeo.2021.104272
    [23]
    JIANG Y M, LIU M. Granular solid hydrodynamics[J]. Granular Matter, 2009, 11(3): 139-156. doi: 10.1007/s10035-009-0137-3
    [24]
    TEYMOURI M, SÁNCHEZ M, SANTAMARINA J C. A pseudo-kinetic model to simulate phase changes in gas hydrate bearing sediments[J]. Marine and Petroleum Geology, 2020, 120: 104519. doi: 10.1016/j.marpetgeo.2020.104519
    [25]
    GUPTA S, HELMIG R, WOHLMUTH B. Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs[J]. Computational Geosciences, 2015, 19(5): 1063-1088. doi: 10.1007/s10596-015-9520-9
    [26]
    YAN R T, WEI C F. Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits[J]. International Journal of Geomechanics, 2017, 17(8): 04017032. doi: 10.1061/(ASCE)GM.1943-5622.0000914
    [27]
    SHEN J, CHIU C F, NG C W W, et al. A state-dependent critical state model for methane hydrate-bearing sand[J]. Computers and Geotechnics, 2016, 75: 1-11. doi: 10.1016/j.compgeo.2016.01.013
    [28]
    DE LA FUENTE M, VAUNAT J, MARÍN-MORENO H. A densification mechanism to model the mechanical effect of methane hydrates in sandy sediments[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(6): 782-802. doi: 10.1002/nag.3038
    [29]
    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010
    [30]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Geotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    [31]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [32]
    HYODO M, LI Y H, YONEDA J, et al. Mechanical behavior of gas-saturated methane hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 2013, 118: 5185-5194. doi: 10.1002/2013JB010233
  • Related Articles

    [1]ZENG Kai-hua, LI Xue-jun, LU Shou-shan, LI Han-long. Unified plastic solutions to a circular tunnel under two-way unequal pressures and their applications[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1772-1779. DOI: 10.11779/CJGE202210002
    [2]LI Hang-zhou, XIONG Guang-dong, GUO Tong, LIAO Hong-jian, PU Ming, Han Bo. Binary-medium model for loess considering unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 53-57. DOI: 10.11779/CJGE2021S1010
    [3]ZHANG Chang-guang, GAO Ben-xian, SHAN Ye-peng, LI Zong-hui. Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1825-1831. DOI: 10.11779/CJGE202010007
    [4]GAO Jiang-ping, LIU Wen-zhi, YANG Ji-qiang. Formulas for bearing capacity of soft soil foundations with hard crust based on three-shear stress unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2331-2337. DOI: 10.11779/CJGE201912019
    [5]ZHANG Chang-guang, ZHAO Jun-hai, ZHANG Qing-he. Convergence - confinement analysis of deep circular rock tunnels based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 110-114.
    [6]Unified solution of shear strength for unsaturated soil under plane strain condition and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [7]Elastic-plastic unified solutions for stresses and displacements of deep buried circular hydraulic tunnel[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1738-1745.
    [8]FAN Wen, SHENG Zhujiang, YU Maohong. Upper-bound limit analysis of earth pressure based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1147-1153.
    [9]XIE Qundan, HE Jie, LIU Jie, OUYANG Jianxiang. Unified twin shear strength theory for calculation of earth pressure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 343-345.
    [10]Yu Maohong. Unified Strength Theory for Geomaterials and lts Applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10.
  • Cited by

    Periodical cited type(6)

    1. 张军辉,张安顺,彭俊辉,胡惠仁. 循环荷载下路基黏土永久变形特性及力学模型. 中国公路学报. 2024(06): 34-45 .
    2. 任戈,刘俊芳,刘鸿飞,白瑞刚,Ihsan Ullal. 基于Eshelby夹杂理论高温冻土累积塑性应变修正模型. 内蒙古工业大学学报(自然科学版). 2024(04): 368-372 .
    3. 张斌龙,刘强,王大雁,张吾渝,周志伟,郭文瑾. 主应力轴旋转条件下初始应力状态对冻结黏土动力特性的影响试验研究. 冰川冻土. 2024(05): 1603-1611 .
    4. 李月,江欣. 钻井液旋转粘度测试中双圆筒力矩分析. 钻探工程. 2024(S1): 96-103 .
    5. 孙凯,李志清,孔佑兴,周应新,王双娇. 单轴循环荷载下冻结土石混合体动弹性模量和累积塑性应变研究. 冰川冻土. 2023(06): 1730-1743 .
    6. 王亚鹏,李国玉,陈敦,马巍,张轩. 复杂循环应力路径下冻结粉质黏土的变形特性与安定性行为研究. 岩土工程学报. 2023(S2): 134-139 . 本站查看

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return