• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YAO Yangping, ZHANG Kui, WANG Zule, ZHU Bin. Evolution analysis of over-consolidated state with UH model and verification of hypergravity centrifuge experiments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1127-1135. DOI: 10.11779/CJGE20230094
Citation: YAO Yangping, ZHANG Kui, WANG Zule, ZHU Bin. Evolution analysis of over-consolidated state with UH model and verification of hypergravity centrifuge experiments[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1127-1135. DOI: 10.11779/CJGE20230094

Evolution analysis of over-consolidated state with UH model and verification of hypergravity centrifuge experiments

More Information
  • Received Date: February 06, 2023
  • Available Online: June 04, 2024
  • Development of a proper constitutive model is the key to solving the strength and deformation problem in soil mechanics. It is revealed that the conventional Cam-clay model would exhibit unrealistically high strength on the supercritical side and sudden changes in stress-strain relations, and it is incapable of extending the stress tensor to three dimensions at the over-consolidated state. The coupling evolution mechanism in the over-consolidated state is introduced in a state-of-the-art UH constitutive model and the unification of calculation formulas in the over-consolidated and normal-consolidated states based on the elastoplastic theory. Through comparisons with the triaxial compression test results, it is verified that the UH model can satisfactorily describe the stress-strain relations of the over-consolidated soil. The validations against supergravity tests on the vertical behaviour of a circular plate, in terms of the load-deformation curve and lateral pressure coefficient distribution of the soil, demonstrate the significant advantage of the UH model over the Cam-clay model. The essence is that the stress-strain relations of the soil element can be described in a more scientific and rational manner in the UH model. It is well proved that the UH model significantly improves the accuracy and practicability in assessing the strength and deformation problems of the over-consolidated soil, thus capturing important theoretical value and practical significance in solving complex geotechnical engineering problems.
  • [1]
    ROSCOE K H, SCHOFIELD A N, WROTH C. On the yielding of soils[J]. Géotechnique, 1958, 8: 22-53. doi: 10.1680/geot.1958.8.1.22
    [2]
    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240. doi: 10.1680/geot.1963.13.3.211
    [3]
    SCHOFIELD A N, WROTH P. Critical State Soil Mechanics[M]. New York: McGraw-Hill, 1968.
    [4]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [5]
    YAO Y P, ZHANG K. Innovations of the UH model associated with a clue of stress-strain chain[J]. Transportation Geotechnics, 2022, 37: 100836. doi: 10.1016/j.trgeo.2022.100836
    [6]
    YAO Y P, LIU L, LUO T. A constitutive model for granular soils[J]. Science China Technological Sciences, 2018, 61(10): 1546-1555. doi: 10.1007/s11431-017-9205-8
    [7]
    YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035
    [8]
    姚仰平, 田雨, 周安楠, 等. 土的统一硬化函数的构造[J]. 中国科学: 技术科学, 2019, 49(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201901003.htm

    YAO Yangping, TIAN Yu, ZHOU Annan, et al. Unified hardening law for soils and its construction[J]. Scientia Sinica (Technologica), 2019, 49(1): 26-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201901003.htm
    [9]
    YAO Y P, SUN D A. Application of Lade's criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112)
    [10]
    YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
    [11]
    姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012, 45(3): 127-150. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203020.htm

    YAO Yangping, ZHANG Bingyin, ZHU Jungao. Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203020.htm
    [12]
    陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm

    CHEN Yunmin, MA Pengcheng, TANG Yao. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm
    [13]
    陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. http://cge.nhri.cn/cn/article/id/14444

    CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) http://cge.nhri.cn/cn/article/id/14444
    [14]
    CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x
    [15]
    沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.

    SHEN Zhujiang. Theoretical Soil Mechanics[M]. Beijing: China Water & Power Press, 2000. (in Chinese)
    [16]
    ANTONIO G. Stress-strain and Strength Characteristics of a Low Plasticity Clay[D]. London: Imperial College London, 1982.
    [17]
    POTTS D M, ZDRAVKOVIC L. Finite Element Analysis in Geotechnical Engineering: Theory[M]. London: Thomas Telford, 1999.
    [18]
    YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
    [19]
    GHANTOUS I B. Prediction of in Situ Consolidation Parameters of Boston Blue Clay[D]. Cambridge: Massachusetts Institute of Technology, 1982.
    [20]
    CHOWDHURY E Q, NAKAI T. Consequences of the tij-concept and a new modeling approach[J]. Computers and Geotechnics, 1998, 23(3): 131-164. doi: 10.1016/S0266-352X(98)00017-2
  • Cited by

    Periodical cited type(5)

    1. 黄炜,简文彬,杨坚,豆红强,罗金妹. 新型多支盘土锚的承载性能研究. 工程地质学报. 2025(02): 772-782 .
    2. 谷复光,王军,常虹. 注浆支盘式锚杆承载特性数值模拟分析. 低温建筑技术. 2024(07): 134-138 .
    3. 孙世国,谢远东,宋腾飞. 锚杆扩大头不同受力方向对其承载能力影响机制探究. 北京工业职业技术学院学报. 2023(01): 1-4 .
    4. 黄炜,简文彬,杨坚,豆红强,罗金妹. 多支盘锚杆的原型试验与荷载传递特征分析. 岩土力学. 2023(02): 520-530 .
    5. 董旭光,李峥,崔自治,李宏波,王永胜. 一种边坡真空锚管研发及工作机理分析. 铁道学报. 2022(12): 114-124 .

    Other cited types(2)

Catalog

    Article views (799) PDF downloads (278) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return