• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Liang-yu, HE Ting-quan, ZHOU Cheng, ZENG Hong-yan, CHEN Qun, ZHONG Qi-ming. Improvement and application of Green-Ampt infiltration model for vegetated cement soil in vegetation restoration of slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 183-188. DOI: 10.11779/CJGE2022S1033
Citation: HUANG Liang-yu, HE Ting-quan, ZHOU Cheng, ZENG Hong-yan, CHEN Qun, ZHONG Qi-ming. Improvement and application of Green-Ampt infiltration model for vegetated cement soil in vegetation restoration of slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 183-188. DOI: 10.11779/CJGE2022S1033

Improvement and application of Green-Ampt infiltration model for vegetated cement soil in vegetation restoration of slopes

More Information
  • Received Date: September 27, 2022
  • Available Online: February 06, 2023
  • Prediction of rainfall infiltration in vegetation restoration of slopes is particularly important. In order to explore the rainfall infiltration process of filling soil in rock-desertificated slopes lattice, the rainfall infiltration modeling of five groups of composite soil columns is conducted, including pure soil, pure soil plus plant hole, soil with cement contellt of 2 %, soil with cement content of 4%, and soil with cement content of 4% plus plant hole. The traditional Green-Ampt infiltration model is too simplified, which divides the rainfall infiltration of soil column into saturated zone and dry zone. Therefore based on the layered soil assumption, the Green-Ampt infiltration model is improved, and the rainfall infiltration of soil column is divided into saturated zone, transitional zone and dry zone. The cumulative infiltration depth and cumulative infiltration amount of new vegetated cement soil with time are studied, and the improved model is verified by compariny with the test results. It is shown that the calculated values by the improved Green-Ampt model for wetting front migration depth are in good agreement with the measured ones, and the calculation accuracy is significantly improved. The improved Green-Ampt model can be used to analyze the cumulative infiltration (water-storage capacity) for the ecological restoration technology in vegetated cement soil in the rock-desertificated slope lattices, which is of a positive engineering practical value.
  • [1]
    赵冰琴, 夏振尧, 许文年, 等. 工程扰动区边坡生态修复技术研究综述[J]. 水利水电技术, 2017, 48(2): 130–137. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201702022.htm

    ZHAO Bing-qin, XIA Zhen-yao, XU Wen-nian, et al. Review on research of slope eco-restoration technique for engineering disturbed area[J]. Water Resources and Hydropower Engineering, 2017, 48(2): 130–137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201702022.htm
    [2]
    叶万军, 张宇鹏. 长期降雨作用下黄土边坡失稳模型试验[J]. 中国科技论文, 2021, 16(6): 603–609. doi: 10.3969/j.issn.2095-2783.2021.06.006

    YE Wan-jun, ZHANG Yu-peng. Model test study on instability of loess slopes under long-term rainfall[J]. China Sciencepaper, 2021, 16(6): 603–609. (in Chinese) doi: 10.3969/j.issn.2095-2783.2021.06.006
    [3]
    潘振辉, 李萍, 肖涛. 黄土水分入渗规律的数值模拟研究[J]. 西北大学学报(自然科学版), 2021, 51(3): 470–484. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202103016.htm

    PAN Zhen-hui, LI Ping, XIAO Tao. The law of water infiltration in loess based on numerical simulation[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(3): 470–484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202103016.htm
    [4]
    HEBER GREEN W, AMPT G A. Studies on soil phyics[J]. The Journal of Agricultural Science, 1911, 4(1): 1–24. doi: 10.1017/S0021859600001441
    [5]
    郭向红, 孙西欢, 马娟娟, 等. 不同入渗水头条件下的Green-Ampt模型[J]. 农业工程学报, 2010, 26(3): 64–68. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201003012.htm

    GUO Xiang-hong, SUN Xi-huan, MA Juan-juan, et al. Green-Ampt model of different infiltration heads[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 64–68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201003012.htm
    [6]
    CHEN L, YOUNG M H. Green-Ampt infiltration model for sloping surfaces[J]. Water Resources Research, 2006, 42(7): 3–9.
    [7]
    雷文凯, 董宏源, 陈攀, 等. 考虑倾角的土质边坡Green-Ampt改进入渗模型[J]. 水利水运工程学报, 2020(6): 101–107. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202006014.htm

    LEI Wen-kai, DONG Hong-yuan, CHEN Pan, et al. Improved Green-Ampt infiltration model of soil slope considering inclination[J]. Hydro-Science and Engineering, 2020(6): 101–107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202006014.htm
    [8]
    范严伟, 赵文举, 王昱, 等. 夹砂层土壤Green-Ampt入渗模型的改进与验证[J]. 农业工程学报, 2015, 31(5): 93–99. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201505014.htm

    FAN Yan-wei, ZHAO Wen-ju, WANG Yu, et al. Improvement and verification of Green-Ampt model for sand-layered soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 93–99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201505014.htm
    [9]
    王文焰, 汪志荣, 王全九, 等. 黄土中Green-Ampt入渗模型的改进与验证[J]. 水利学报, 2003, 34(5): 30–34. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200305005.htm

    WANG Wen-yan, WANG Zhi-rong, WANG Quan-jiu, et al. Improvement and evaluation of the Green-Ampt model in loess soil[J]. Journal of Hydraulic Engineering, 2003, 34(5): 30–34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200305005.htm
    [10]
    彭振阳, 黄介生, 伍靖伟, 等. 基于分层假设的Green-Ampt模型改进[J]. 水科学进展, 2012, 23(1): 59–66. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201201008.htm

    PENG Zhen-yang, HUANG Jie-sheng, WU Jing-wei, et al. Modification of Green-Ampt model based on the stratification hypothesis[J]. Advances in Water Science, 2012, 23(1): 59–66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201201008.htm
    [11]
    曾红艳. 新型植被水泥土修复边坡创面的水力特性研究[D]. 成都: 四川大学, 2021.

    ZENG Hong-yan. Study on Hydraulic Characteristics of New Vegetation Cement Soil for Repairing Slope Wound[D]. Chengdu: Sichuan University, 2021. (in Chinese)
    [12]
    BOUWER H. Infiltration of water into nonuniform soil[J]. Journal of the Irrigation and Drainage Division, 1969, 95(4): 451–462.
    [13]
    潘登丽, 倪万魁, 苑康泽, 等. 基于VG模型确定土水特征曲线基本参数[J]. 工程地质学报, 2020, 28(1): 69–76. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001008.htm

    PAN Deng-li, NI Wan-kui, YUAN Kang-ze, et al. Determination of soil-water characteristic curve variables based on vg model[J]. Journal of Engineering Geology, 2020, 28(1): 69–76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001008.htm

Catalog

    Article views (159) PDF downloads (31) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return