• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Peng-wei, ZHOU Yang-xin, GAO Wen-zhe, LIU Bao-guo. Multiphase flow computational model for extraction of gas hydrates in marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 80-84. DOI: 10.11779/CJGE2022S1015
Citation: ZHANG Peng-wei, ZHOU Yang-xin, GAO Wen-zhe, LIU Bao-guo. Multiphase flow computational model for extraction of gas hydrates in marine soft soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 80-84. DOI: 10.11779/CJGE2022S1015

Multiphase flow computational model for extraction of gas hydrates in marine soft soils

More Information
  • Received Date: September 21, 2022
  • Available Online: February 06, 2023
  • The gas hydrate is a type of unconventional clean energy with substantial reserves. The successful and safely extraction of gas hydrates is of great significance in guaranteeing the energy safety of China. At present the depressurization method is a kind of the most widely used and promising extraction means for the gas hydrates. The problems of multiphase flow in the reservoir caused by hydrate phase transition are studied theoretically and numerically. Firstly, a mathematical model for coupling the kinetic decomposition of the gas hydrates and the multiphase flow in porous media is established. The proposed model is numerically implemented by the software COMSOL Multiphysics, and its effectiveness is validated through the Masuda's experiments. Then, the sensitivity analysis for the key factors which have impact on the extraction of the gas hydrates is conducted. The results show that the gas production rate increases with the increase of the permeability and pressure drop amplitude.
  • [1]
    SUM A K, KOH C A, SLOAN E D. Clathrate hydrates: from laboratory science to engineering practice[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7457–7465.
    [2]
    田慧会, 韦昌富, 颜荣涛, 等. 粉土中二氧化碳水合物分解过程的核磁试验研究[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 173–180. doi: 10.3969/j.issn.0253-2778.2019.03.001

    TIAN Hui-hui, WEI Chang-fu, YAN Rong-tao, et al. A NMR-based analysis of carbon dioxide hydrate dissociation process in silt[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(3): 173–180. (in Chinese) doi: 10.3969/j.issn.0253-2778.2019.03.001
    [3]
    DAI S, SEOL Y. Water permeability in hydrate-bearing sediments: A pore-scale study[J]. Geophysical Research Letters, 2014, 41(12): 4176–4184. doi: 10.1002/2014GL060535
    [4]
    刘乐乐, 张准, 宁伏龙, 等. 含水合物沉积物渗透率分形模型[J]. 中国科学: 物理学力学天文学, 2019, 49(3): 165–172. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903013.htm

    LIU Le-le, ZHANG Zhun, NING Fu-long, et al. A fractal model for the relative permeability prediction of hydrate-bearing sediments[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(3): 165–172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201903013.htm
    [5]
    SINGH H, MYSHAKIN E M, SEOL Y. A nonempirical relative permeability model for hydrate-bearing sediments[J]. Society of Petroleum Engineers Journal, 2019, 24(2): 547–562.
    [6]
    蔡建超, 夏宇轩, 徐赛, 等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52(1): 208–223. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001019.htm

    CAI Jian-chao, XIA Yu-xuan, XU Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208–223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001019.htm
    [7]
    KIM H C, BISHNOI P R, HEIDEMANN R A, et al. Kinetics of methane hydrate decomposition[J]. Chemical Engineering Science, 1987, 42(7): 1645–1653. doi: 10.1016/0009-2509(87)80169-0
    [8]
    SUN X, NANCHARY N, MOHANTY K K. 1-D modeling of hydrate depressurization in porous media[J]. Transport in Porous Media, 2005, 58(3): 315–338. doi: 10.1007/s11242-004-1410-x
    [9]
    KAMATH V A. A perspective on gas production from hydrates[C]// JNOC's Methane Hydrate International Symposium, 1998: 20–22.
    [10]
    SUN X, LUO H, SOGA K. A coupled thermal-hydraulic- mechanical-chemical (THMC) model for methane hydrate bearing sediments using COMSOL Multiphysics[J]. Journal of Zhejiang University-SCIENCE A, 2018, 19(8): 600–623. doi: 10.1631/jzus.A1700464
    [11]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
    [12]
    MASUDA Y. Numerical calculation of gas production performance from reservoirs containing natural gas hydrates[C]// Annual Technical Conference, San Antonio, Texas, 1997.
    [13]
    HARDWICK J S, MATHIAS S A. Masuda's sandstone core hydrate dissociation experiment revisited[J]. Chemical Engineering Science, 2018, 175: 98–109. doi: 10.1016/j.ces.2017.09.003
  • Cited by

    Periodical cited type(8)

    1. 梅君,王勇,梁宸. 地铁盾构水土中接收对封堵墙扰动作用的研究. 科技通报. 2024(11): 57-62 .
    2. 焦月红,万治安,顾佳伟,王寿鹤,周游,王勇,张跃曦. 装配式钢板箱水土中接收监测分析. 建设科技. 2024(S1): 199-202 .
    3. 胡永利,路林海,刘家海. 富水敏感区既有地铁站盾构接收控水技术研究. 建筑技术. 2023(01): 100-102 .
    4. 彭远胜,欧孝夺,姬凤玲. 铝土尾矿泡沫轻质土单轴抗压力学特性及唯象本构模型. 应用基础与工程科学学报. 2023(03): 675-689 .
    5. 冯红喜,闫文博,朱昕阳,高腾达. 穿黄隧道超大直径盾构接收关键技术研究. 人民黄河. 2023(S1): 127-128+130 .
    6. 孙伟,王兆民,牛宇哲,杨星,杨志勇,江玉生. 北京地铁8号线泥水盾构接收端洞门受力计算及支撑分析. 科技和产业. 2023(23): 249-254 .
    7. 彭远胜,欧孝夺,姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征. 材料导报. 2022(17): 128-133 .
    8. 冯红喜,李一博,张忠炎. 水平注浆加固与钢套筒在盾构接收的应用分析. 山西建筑. 2022(19): 136-138 .

    Other cited types(3)

Catalog

    Article views (161) PDF downloads (24) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return