• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516
Citation: PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516

Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)

More Information
  • Received Date: December 06, 2022
  • Available Online: April 18, 2024
  • The coarse-grained soil is widely used in embankments, earth-rock dams and other fill projects. However, the traditional sieving method is time-consuming and inefficient, failing to meet the rapid quality testing requirements for gradation. To address these issues, an "image-gradation" relational database is established for yellow river silt and quartz sand coarse-grained soil, comprising 22380 photos. In response to the mismatch between two-dimensional image and three-dimensional gradation, a searcher-analyzer network (SaNet) is developed to handle any number of image inputs. The model accuracy steadily improves with an increase in the number of images, with average errors of 1.63% and 1.21% for the recognition of yellow river silt and quartz sand gradations, and the coefficient of determination of 0.995 and 0.992, respectively. The results demonstrate that the proposed deep learning model on the SaNet architecture exhibits high accuracy in gradation recognition, meeting the real-time non-destructive gradation detection requirements in fill projects.
  • [1]
    何忠明, 杨 煜, 段旭龙. 粗粒土路堤填料路用性能及其循环动应力试验[J]. 长安大学学报(自然科学版), 2019, 39(2): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902005.htm

    HE Zhongming, YANG Yu, DUAN Xulong. Experimental on road performance and cyclic dynamic stress of coarse-grained soil subgrade[J]. Journal of Chang’an University (Natural Science Edition), 2019, 39(2): 27-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902005.htm
    [2]
    王天亮, 张 飞, 宋宏芳, 等. 高速铁路路基粗粒土填料动静力力学特性试验研究[J]. 铁道学报, 2022, 44(4): 127-135. doi: 10.3969/j.issn.1001-8360.2022.04.016

    WANG Tianliang, ZHANG Fei, SONG Hongfang, et al. Experimental study on dynamic and static mechanical properties of coarse-grained soil filled in high-speed railway subgrade[J]. Journal of the China Railway Society, 2022, 44(4): 127-135. (in Chinese) doi: 10.3969/j.issn.1001-8360.2022.04.016
    [3]
    ZHANG C Y. Research on the frost-heave performances of filling material consisted of coarse grained soil for high-speed railway subgrade[J]. Journal of Railway Engineering Society, 2018, 35(2): 24-28. doi: 10.3969/j.issn.1006-2106.2018.02.006
    [4]
    NIE R S, SUN B L, CHENG L H, et al. Resilient characteristics test of coarse-grained soil filler for heavy haul railway subgrade[J]. Journal of the China Railway Society, 2022, 44(1): 96-104. doi: 10.3969/j.issn.1001-8360.2022.01.013
    [5]
    陈生水. 高土石坝变形破坏过程预测理论和防控技术创新[J]. 岩土工程学报, 2022, 44(7): 1211-1219. doi: 10.11779/CJGE202207003

    CHEN Shengshui. Innovations in prediction theories and prevention technologies for deformation-induced failure process of high earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1211-1219. (in Chinese) doi: 10.11779/CJGE202207003
    [6]
    李 希, 张 升, 盛岱超, 等. 基于抽样可靠性的颗分试验取样数量研究[J]. 岩土工程学报, 2016, 38(11): 2122-2127. doi: 10.11779/CJGE201611024

    LI Xi, ZHANG Sheng, SHENG Daichao, et al. Reasonable sample capacity for grain-size analysis tests based on sampling reliability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2122-2127. (in Chinese) doi: 10.11779/CJGE201611024
    [7]
    吕 超, 唐朝生, 李胜杰, 等. 基于数字图像处理技术的砂土颗粒级配分析研究[J]. 高校地质学报, 2019, 25(3): 431-436. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903011.htm

    LÜ Chao, TANG Chaosheng, LI Shengjie, et al. Gradation analysis of sand particles based on digital image processing technology[J]. Geological Journal of China Universities, 2019, 25(3): 431-436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201903011.htm
    [8]
    于 沭, 温彦锋, 王玉杰, 等. 基于图像识别技术的土石料级配检测系统[J]. 中国水利水电科学研究院学报, 2019, 17(6): 439-445. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201906006.htm

    YU Shu, WEN Yanfeng, WANG Yujie, et al. Gradation testing system of rockfill material based on image recognition technology[J]. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(6): 439-445. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201906006.htm
    [9]
    程永春, 马健生, 颜廷野, 等. 基于数字图像处理技术的沥青混合料级配检测方法[J]. 科学技术与工程, 2017, 17(32): 332-338. doi: 10.3969/j.issn.1671-1815.2017.32.055

    CHENG Yongchun, MA Jiansheng, YAN Tingye, et al. Asphalt mixture gradation detection method based on digital image processing technology[J]. Science Technology and Engineering, 2017, 17(32): 332-338. (in Chinese) doi: 10.3969/j.issn.1671-1815.2017.32.055
    [10]
    雷雨萌, 陈祖煜, 于 沭, 等. 基于深度阈值卷积模型的土石料级配智能检测方法研究[J]. 水利学报, 2021, 52(3): 369-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103013.htm

    LEI Yumeng, CHEN Zuyu, YU Shu, et al. Intelligent detection of gradation for earth-rockfill materials base on deep otsu convolutional neural network[J]. Journal of Hydraulic Engineering, 2021, 52(3): 369-380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103013.htm
    [11]
    FAN H Y, TIAN Z H, XU X B, et al. Rockfill material segmentation and gradation calculation based on deep learning[J]. Case Studies in Construction Materials, 2022, 17: e01216. doi: 10.1016/j.cscm.2022.e01216
    [12]
    刘禹杉, 孙淼军, 吴帅峰, 等. 土石料粒径与级配的图像智能识别研究[J]. 岩土工程学报, 2023, 45(增刊1): 59-62. doi: 10.11779/CJGE2023S10051

    LIU Yushan, SUN Miaojun, WU Shuaifeng, et al. Intelligent image recognition of particle size and gradation of earth-rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 59-62. (in Chinese) doi: 10.11779/CJGE2023S10051
    [13]
    ZHOU X, GONG Q, LIU Y, et al. Automatic segmentation of TBM muck images via a deep-learning approach to estimate the size and shape of rock chips[J]. Automation in Construction, 2021, 126: 103685. doi: 10.1016/j.autcon.2021.103685
    [14]
    SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
    [15]
    LIU Z, LI L, FANG X, et al. Hard-rock tunnel lithology prediction with TBM construction big data using a global- attention-mechanism-based LSTM network[J]. Automation in Construction, 2021, 125: 103647. doi: 10.1016/j.autcon.2021.103647
    [16]
    YANG D, GU C, ZHU Y, et al. A concrete dam deformation prediction method based on LSTM with attention mechanism[J]. Ieee Access, 2020, 8: 185177-185186. doi: 10.1109/ACCESS.2020.3029562
    [17]
    EBRAHIMABADI A, AZIMIPOUR M, BAHREINI A. Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM)[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(5): 573-583. doi: 10.1016/j.jrmge.2015.06.008
    [18]
    KOOPIALIPOOR M, ASTERIS P G, MOHAMMED A S, et al. Introducing stacking machine learning approaches for the prediction of rock deformation[J]. Transportation Geotechnics, 2022, 34: 100756. doi: 10.1016/j.trgeo.2022.100756
    [19]
    HE K, ZHANG X, REN S, et al. 2016. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, 2016.
  • Cited by

    Periodical cited type(21)

    1. 孟珂,王笑梅,杜晓冉,张晓曼,罗娟. 罕见多矿物晶体共生标本的综合鉴定. 矿产综合利用. 2025(01): 200-205 .
    2. 刘勇,张志康,魏建平,徐向宇,郜英俊. 柔性刀具冲击破煤能量演化及关键参数. 煤炭学报. 2025(02): 965-974 .
    3. 李红丽. 非均质岩石单轴压缩下损伤演化规律数值模拟研究. 有色矿冶. 2024(01): 43-48 .
    4. 鞠明和,陶泽军,蔚立元,姜礼杰,郑彦龙,邹春江. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究. 岩土力学. 2024(04): 1242-1255 .
    5. 吴泽兵,袁若飞,张文溪,王刚,胡诗尧. PDC混合布齿钻头破碎非均质花岗岩数值模拟. 天然气工业. 2024(05): 105-117 .
    6. 周元,吕威帆,王颖轶. 基于块体离散元法的盾构掘进围岩与管片变形模拟研究. 都市快轨交通. 2024(03): 125-134 .
    7. 裴书锋,郝文锋,王营利,王一汀,曾凤娟. 双江口水电站花岗岩单轴压缩微观破坏机制研究. 西北水电. 2024(04): 62-68 .
    8. 张国桥,孙鹏,吴祥业,王婧雅,郭文斌,田宇航. 基于PFC-GBM非均质模型的砂岩裂纹演化细观规律研究. 中国矿业. 2024(09): 158-169 .
    9. 冯龙飞,王双明,王晓东,解嘉豪,窦林名. 煤单轴峰后动态冲击破坏特征及差异机制模拟研究. 煤炭学报. 2024(S2): 714-730 .
    10. 马文强,王酒婷. 花岗岩受压宏-细观破坏特征及能量演化规律. 信阳师范学院学报(自然科学版). 2023(02): 314-320 .
    11. 张涛,蔚立元,苏海健,高亚楠,贺虎,魏江波. 基于多级力链网络分析的花岗岩压缩特性的矿物尺寸效应研究. 岩石力学与工程学报. 2023(08): 1988-2003 .
    12. 乔世范,刘钰,王刚,张细宝,张海凤,董常瑞,谭晶仁,檀俊坤. 考虑岩石细观结构的TBM滚刀破岩过程数值研究. 中国安全生产科学技术. 2023(07): 106-112 .
    13. 向衍斌. 煤系岩石单轴压缩损伤破坏演化规律与表征. 煤矿安全. 2023(09): 88-95 .
    14. 赵光明,高宇,吴旭坤. 岩石变刚度实验条件下力学与声发射特性. 安徽理工大学学报(自然科学版). 2023(06): 63-72 .
    15. 王桂林,王润秋,孙帆. 块体离散元颗粒模型细观参数标定方法及花岗岩细观演化模拟. 长江科学院院报. 2022(01): 86-93 .
    16. 张涛,蔚立元,鞠明和,李明,苏海健,季浩奇. 基于PFC3D-GBM的晶体–单元体尺寸比对花岗岩动态拉伸特性影响分析. 岩石力学与工程学报. 2022(03): 468-478 .
    17. 兰恒星,包含,孙巍锋,刘世杰. 岩体多尺度异质性及其力学行为. 工程地质学报. 2022(01): 37-52 .
    18. 李博,梁秦源,周宇,赵程,伍法权. 基于CT-GBM重构法的花岗岩裂纹扩展规律研究. 岩石力学与工程学报. 2022(06): 1114-1125 .
    19. Tongzhao Zhang,Hongguang Ji,Xiaobo Su,Shuang You,Daolu Quan,Zhou Zhang,Jinzhe Li. Evaluation and classification of rock heterogeneity based on acoustic emission detection. International Journal of Minerals, Metallurgy and Materials. 2022(12): 2117-2125 .
    20. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    21. 李博,朱强,张丰收,赵程,伍法权. 基于矿物晶体模型的非均质性岩石双裂纹扩展规律研究. 岩石力学与工程学报. 2021(06): 1119-1131 .

    Other cited types(28)

Catalog

    Article views (333) PDF downloads (89) Cited by(49)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return