• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Jiajin, MA Junjie, YU Jianlin, GONG Xiaonan, ZHANG Rihong. Field tests on bearing capacity of pre-bored grouted planted piles under compression and tension[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 640-647. DOI: 10.11779/CJGE20221414
Citation: ZHOU Jiajin, MA Junjie, YU Jianlin, GONG Xiaonan, ZHANG Rihong. Field tests on bearing capacity of pre-bored grouted planted piles under compression and tension[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 640-647. DOI: 10.11779/CJGE20221414

Field tests on bearing capacity of pre-bored grouted planted piles under compression and tension

More Information
  • Received Date: November 15, 2022
  • Available Online: July 05, 2023
  • A series of field tests are conducted to study the compressive and uplift bearing capacities of pre-bored grouted planted (PGP) piles in the same test site, and the test piles are all loaded to the ultimate state. The compression and uplift bearing capacities of the PGP piles are also compared based on the field test results. The test results show that the compressive bearing capacity of the PGP piles is significantly improved compared to that of the bored piles, and the ultimate skin friction of the PGP piles in different soil layers in this research is about 1.49~3.21 times the ultimate skin friction of the bored piles recommended by the local specification. The uplift bearing capacity of the PGP piles is also better than that of the bored piles, and the ultimate skin friction of the PGP piles under tension is 1.52~1.55 times that of the bored piles under tension recommended by the local specification. Moreover, the ultimate skin friction of the PGP piles under compression is obviously smaller than that under tension, and the uplift coefficient of skin friction is also needed for the PGP piles.
  • [1]
    周佳锦. 静钻根植竹节桩承载及沉降性能试验研究与有限元模拟[D]. 杭州: 浙江大学, 2016.

    ZHOU Jiajin. Test and Modeling on Behavior of the Pre-Bored Grouting Planted Nodular Pile[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
    [2]
    周佳锦, 王奎华, 龚晓南, 等. 静钻根植竹节桩承载力及荷载传递机制研究[J]. 岩土力学, 2014, 35(5): 1367-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405023.htm

    ZHOU Jiajin, WANG Kuihua, GONG Xiaonan, et al. Bearing capacity and load transfer mechanism of static drill rooted nodular piles[J]. Rock and Soil Mechanics, 2014, 35(5): 1367-1376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405023.htm
    [3]
    任连伟, 刘汉龙, 雷玉华. 高喷插芯组合桩技术及其应用[J]. 岩土工程学报, 2008, 30(增刊1): 518-522. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1110.htm

    REN Lianwei, LIU Hanlong, LEI Yuhua. Technology and application of JG soil-cement-pile strengthened pile[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 518-522. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2008S1110.htm
    [4]
    刘汉龙, 任连伟, 郑浩, 等. 高喷插芯组合桩荷载传递机制足尺模型试验研究[J]. 岩土力学, 2010, 31(5): 1395-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201005012.htm

    LIU Hanlong, REN Lianwei, ZHENG Hao, et al. Full-scale model test on load transfer mechanism for jet grouting soil-cement-pile strengthened pile[J]. Rock and Soil Mechanics, 2010, 31(5): 1395-1401. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201005012.htm
    [5]
    叶观宝, 蔡永生, 张振. 加芯水泥土桩复合地基桩土应力比计算方法研究[J]. 岩土力学, 2016, 37(3): 672-678. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603009.htm

    YE Guanbao, CAI Yongsheng, ZHANG Zhen. Research on calculation of pile-soil stress ratio for composite foundation reinforced by stiffened deep mixed piles[J]. Rock and Soil Mechanics, 2016, 37(3): 672-678. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603009.htm
    [6]
    ZHANG Z, YE G B, CAI Y S, et al. Centrifugal and numerical modeling of stiffened deep mixed column- supported embankment with slab over soft clay[J]. Canadian Geotechnical Journal, 2019, 56(10): 1418-1432. doi: 10.1139/cgj-2018-0180
    [7]
    王安辉, 章定文, 谢京臣. 软黏土中劲性复合桩水平承载特性p-y曲线研究[J]. 岩土工程学报, 2020, 42(2): 381-389. doi: 10.11779/CJGE202002020

    WANG Anhui, ZHANG Dingwen, XIE Jingchen. P-y curves for lateral bearing behavior of strength composite piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 381-389. (in Chinese) doi: 10.11779/CJGE202002020
    [8]
    WANG A H, ZHANG D W, DENG Y G. Lateral response of single piles in cement-improved soil: numerical and theoretical investigation[J]. Computers and Geotechnics, 2018, 102: 164-178. doi: 10.1016/j.compgeo.2018.06.014
    [9]
    KON H, YOSHIDA E, KABASAWA K, et al. Investigation of soil cement around nodular piles after pile-toe load test installed by pre-bored piling method[J]. Japanese Journal of Geotechnical Engineering, 2011, 5(4): 615-623. (in Japanese)
    [10]
    KON H, YOSHIDA E, KIMURA M. A study on adhesion of nodular pile and soil cement by pre-bored piling method[J]. Japanese Journal of Geotechnical Engineering, 2013, 7(1): 361-375. (In Japanese).
    [11]
    KIM D, JEONG S, PARK J. Analysis on shaft resistance of the steel pipe prebored and precast piles based on field load-transfer curves and finite element method[J]. Soils and Foundations, 2020, 60(2): 478-495. doi: 10.1016/j.sandf.2020.03.011
    [12]
    JAMSAWANG P, BERGADO D T, VOOTTIPRUEX P. Field behaviour of stiffened deep cement mixing piles[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2011, 164(1): 33-49. doi: 10.1680/grim.900027
    [13]
    VOOTTIPRUEX P, SUKSAWAT T, BERGADO D T, et al. Numerical simulations and parametric study of SDCM and DCM piles under full scale axial and lateral loads[J]. Computers and Geotechnics, 2011, 38(3): 318-329. doi: 10.1016/j.compgeo.2010.11.006
    [14]
    ZHOU J J, GONG X N, ZHANG R H. Model tests to compare the behavior of pre-bored grouted planted piles and wished-in-place concrete pile in dense sand[J]. Soils and Foundations, 2019, 59(1): 84-96. doi: 10.1016/j.sandf.2018.09.003
    [15]
    ZHOU J J, YU J L, GONG X N, et al. The effect of cemented soil strength on the frictional capacity of precast concrete pile –cemented soil interface[J]. Acta Geotechnica. 2020, 15: 3271-3282. doi: 10.1007/s11440-020-00915-x
    [16]
    俞建霖, 徐嘉诚, 周佳锦, 等. 混凝土芯水泥土复合桩混凝土-水泥土界面摩擦特性试验研究[J]. 土木工程学报, 2022, 55(8): 93-104, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202208010.htm

    YU Jianlin, XU Jiacheng, ZHOU Jiajin, et al. Experimental study on frictional capacity of concrete- cemented soil interface of concrete-cored cemented soil column[J]. China Civil Engineering Journal, 2022, 55(8): 93-104, 117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202208010.htm
    [17]
    ZHOU J J, GONG X N, WANG K H, et al Testing and modeling the behavior of pre-bored grouting planted piles under compression and tension[J]. Acta Geotechnica, 2017: 1061-1075.
    [18]
    ZHOU J J, YU J L, GONG X N, et al. Field tests on behavior of pre-bored grouted planted pile and bored pile embedded in deep soft clay[J]. Soils and Foundations, 2020, 60(2): 551-561. doi: 10.1016/j.sandf.2020.03.013
    [19]
    上海市建设和管理委员会. 岩土工程勘察规范: DGJ 08—37—2002[S]. 2002.

    Shanghai Municipal Construction and Management Commission. Code for Investigation of Geotechnical Engineering. DGJ 08—37—2002[S]. 2002. (in Chinese)
    [20]
    建筑桩基检测技术规范: JGJ106—2022[S]. 2022.

    Technical Code for Testing of Building Foundation Piles: JGJ106—2022[S]. 2022. (in Chinese)
    [21]
    凌光容, 安海玉, 谢岱宗, 等. 劲性搅拌桩的试验研究[J]. 建筑结构学报, 2001, 22(2): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200102017.htm

    LING Guangrong, AN Haiyu, XIE Daizong, et al. Experimental study on concrete core mixing pile[J]. Journal of Building Structures, 2001, 22(2): 92-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200102017.htm
    [22]
    宋义仲, 卜发东, 程海涛, 等. 管桩水泥土复合基桩承载性能试验研究[J]. 工程质量A版, 2012, 30(5): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GCZL201205003.htm

    SONG Yizhong, BU Fadong, CHENG Haitao, et al. Experimental study on bearing properties of tubular cement composite pile[J]. Construction Quality, 2012, 30(5): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCZL201205003.htm
    [23]
    FLEMING K, WELTMAN A, RANDOLPH M, et al. Piling Engineering[M]. 3rd ed. London: Taylor & Francis, 2009.
    [24]
    API 2014. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design, API RP2A-WSD[S]. 22th Ed. Washington: American Petroleum Institute, 2014.
  • Cited by

    Periodical cited type(9)

    1. 陈梦豪,付海,曹珊珊,林铭宇,陈良宇. 温度对MX-80膨润土物理性能的影响. 金陵科技学院学报. 2024(01): 46-53 .
    2. 李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 . 本站查看
    3. 薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
    4. 项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 .
    5. 李彩霞,李俊,徐猛,刘敏,刘桂祺. 氯盐溶液对钠基膨润土垫层膨胀性能的影响. 土木与环境工程学报(中英文). 2023(01): 97-104 .
    6. 王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 .
    7. 曾召田,张瀚彬,邵捷昇,车东泽,吕海波,梁珍. MX-80膨润土高温老化时间效应的细微观分析. 岩土力学. 2023(S1): 145-153 .
    8. 胡志杰,项国圣,付文青,王浩,李华健. 荷载-溶液作用下膨润土压缩渗透性能研究. 地下空间与工程学报. 2023(06): 1851-1858 .
    9. 项国圣,胡志杰,葛磊,王浩. 含盐水溶液作用下膨润土膨胀性能衰减机理. 华北水利水电大学学报(自然科学版). 2022(05): 85-91 .

    Other cited types(6)

Catalog

    Article views (483) PDF downloads (168) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return