• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Bo, CAO Linfeng, LI Yuchao. Long-term service performance of cutoff walls considering chemical compatibility of soil-bentonite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 282-290. DOI: 10.11779/CJGE20221288
Citation: HUANG Bo, CAO Linfeng, LI Yuchao. Long-term service performance of cutoff walls considering chemical compatibility of soil-bentonite[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 282-290. DOI: 10.11779/CJGE20221288

Long-term service performance of cutoff walls considering chemical compatibility of soil-bentonite

More Information
  • Received Date: October 17, 2022
  • Available Online: February 05, 2024
  • Considering the high concentrations of Na+ and Ca2+ in the leachate of landfills, the hydraulic conductivity of soil-bentonite will increase significantly, thereby accelerating the high-risk pollutants to break through the soil-bentonite cutoff wall. A numerical model for the transport of organic contaminants in the soil-bentonite cutoff wall-aquifer system under the action of Na+ and Ca2+ is established. This model can consider the changes in parameters such as hydraulic conductivity and hydrodynamic dispersion coefficient with the concentrations of Na+ and Ca2+. The numerical solution of the model is obtained by the finite difference method. The correctness of the model is verified by comparing its calculated results with the existing analytical solutions and those of the COMSOL software. Finally, based on the established numerical model, the effects of chemical compatibility of soil-bentonite, water head difference and bentonite content on the long-term service performance of the cutoff wall are analyzed and discussed with toluene as a representative organic pollutant. The results show that after considering the chemical compatibility of soil-bentonite, the cutoff wall changes from never breaking down to breaking down after 75 years of service, and the service life is significantly reduced. Reducing the water head difference at both sides of the cutoff wall can effectively delay the breakthrough time of contaminant. The lower limit of the bentonite content of the cutoff wall should be appropriately increased on the basis of the original anti-seepage requirements to deal with the decrease of anti-fouling barrier performance of the cutoff wall under the action of contaminants.
  • [1]
    朱伟, 徐浩青, 王升位, 等. CaCl2溶液对不同黏土基防渗墙渗透性的影响[J]. 岩土力学, 2016, 37(5): 1224-1230, 1236.

    ZHU Wei, XU Haoqing, WANG Shengwei, et al. Influence of CaCl2 solution on the permeability of different clay-based cutoff walls[J]. Rock and Soil Mechanics, 2016, 37(5): 1224-1230, 1236. (in Chinese)
    [2]
    XU H Q, SHU S, WANG S W, et al. Studies on the chemical compatibility of soil-bentonite cut-off walls for landfills[J]. Journal of Environmental Management, 2019, 237: 155-162.
    [3]
    CHEGENIZADEH A, KERAMATIKERMAN M, DALLA SANTA G, et al. Influence of recycled tyre amendment on the mechanical behaviour of soil-bentonite cut-off walls[J]. Journal of Cleaner Production, 2018, 177: 507-515. doi: 10.1016/j.jclepro.2017.12.268
    [4]
    ZHAN L T, YOU Y Q, ZHAO R, et al. Centrifuge modelling of lead retardation in soil–bentonite cut-off walls[J]. International Journal of Physical Modelling in Geotechnics, 2023, 23(4): 166-179. doi: 10.1680/jphmg.21.00007
    [5]
    D'APPOLONIA D J. Soil-bentonite slurry trench cutoffs[J]. Journal of the Geotechnical Engineering Division, 1980, 106(4): 399-417. doi: 10.1061/AJGEB6.0000945
    [6]
    刘松玉. 污染场地测试评价与处理技术[J]. 岩土工程学报, 2018, 40(1): 1-37. doi: 10.11779/CJGE201801001

    LIU Songyu. Geotechnical investigation and remediation for industrial contaminated sites[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 1-37. (in Chinese) doi: 10.11779/CJGE201801001
    [7]
    MISHRA A K, OHTSUBO M, LI L, et al. Effect of salt concentrations on the permeability and compressibility of soil-bentonite mixtures[J]. Journal of the Faculty of Agriculture, Kyushu University, 2005, 50(2): 837-849. doi: 10.5109/4692
    [8]
    MALUSIS M A, MCKEEHAN M D. Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 189-198. doi: 10.1061/(ASCE)GT.1943-5606.0000729
    [9]
    范日东, 杜延军, 刘松玉, 等. 无机盐溶液作用下砂-膨润土竖向隔离屏障材料化学相容性试验研究[J]. 岩土力学, 2020, 41(3): 736-746.

    FAN Ridong, DU Yanjun, LIU Songyu, et al. Experimental study on chemical compatibility of sand-bentonite backfills for vertical cutoff barrier permeated with inorganic salt solutions[J]. Rock and Soil Mechanics, 2020, 41(3): 736-746. (in Chinese)
    [10]
    FAN R D, DU Y J, LIU S Y, et al. Engineering behavior and sedimentation behavior of lead contaminated soil-bentonite vertical cutoff wall backfills[J]. Journal of Central South University, 2013, 20(8): 2255-2262. doi: 10.1007/s11771-013-1732-3
    [11]
    DU Y J, FAN R D, REDDY K R, et al. Impacts of presence of lead contamination in clayey soil-calcium bentonite cutoff wall backfills[J]. Applied Clay Science, 2015, 108: 111-122. doi: 10.1016/j.clay.2015.02.006
    [12]
    FU X L, SHEN S Q, REDDY K R, et al. Hydraulic conductivity of sand/biopolymer-amended bentonite backfills in vertical cutoff walls permeated with lead solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(2): 04021186. doi: 10.1061/(ASCE)GT.1943-5606.0002737
    [13]
    HE Y, WANG M M, WU D Y, et al. Effects of chemical solutions on the hydromechanical behavior of a laterite/bentonite mixture used as an engineered barrier[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1169-1180. doi: 10.1007/s10064-020-02003-6
    [14]
    朱伟, 舒实, 王升位, 等. 垃圾填埋场渗沥液击穿防渗系统的指示污染物研究[J]. 岩土工程学报, 2016, 38(4): 619-626. doi: 10.11779/CJGE201604005

    ZHU Wei, SHU Shi, WANG Shengwei, et al. Investigation of indicating pollutant for landfill leachate breaking through anti-seepage system[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 619-626. (in Chinese) doi: 10.11779/CJGE201604005
    [15]
    付美云, 周立祥. 垃圾渗滤液在土壤中的生物降解动态[J]. 应用生态学报, 2007, 18(1): 118-122. doi: 10.3321/j.issn:1001-9332.2007.01.020

    FU Meiyun, ZHOU Lixiang. Biodegradation of landfill leachate in soil[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 118-122. (in Chinese) doi: 10.3321/j.issn:1001-9332.2007.01.020
    [16]
    MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. 3rd ed. Hoboken, NJ: John Wiley & Sons, 2005.
    [17]
    ACAR Y B, HAIDER L. Transport of low-concentration contaminants in saturated earthen barriers[J]. Journal of Geotechnical Engineering, 1990, 116(7): 1031-1052. doi: 10.1061/(ASCE)0733-9410(1990)116:7(1031)
    [18]
    RABIDEAU A, KHANDELWAL A. Boundary conditions for modeling transport in vertical barriers[J]. Journal of Environmental Engineering, 1998, 124(11): 1135-1139. doi: 10.1061/(ASCE)0733-9372(1998)124:11(1135)
    [19]
    丁祥鸿, 冯世进. 固结作用下非均质隔离墙中污染物二维运移规律研究[J]. 岩土工程学报, 2022, 44(3): 584-590. doi: 10.11779/CJGE202203021

    DING Xianghong, FENG Shijin. Two-dimensional migration of contaminants in non-homogeneous cutoff wall considering consolidation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 584-590. (in Chinese) doi: 10.11779/CJGE202203021
    [20]
    CASTELBAUM D, SHACKELFORD C D. Hydraulic conductivity of bentonite slurry mixed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1941-1956. doi: 10.1061/(ASCE)GT.1943-5606.0000169
    [21]
    LI Y C, CLEALL P J. Analytical solutions for advective-dispersive solute transport in double-layered finite porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(4): 438-460. doi: 10.1002/nag.903
    [22]
    郑紫荆, 朱云海, 王巧, 等. 有机污染物在含土工膜复合隔离墙和含水层系统的运移半解析模型[J]. 岩土力学, 2022, 43(2): 453-465.

    ZHENG Zijing, ZHU Yunhai, WANG Qiao, et al. A semi-analytical model for analyzing the transport of organic pollutants through the geomembrane composite cut-off wall and aquifer system[J]. Rock and Soil Mechanics, 2022, 43(2): 453-465. (in Chinese)
    [23]
    FETTER C W. Contaminant hydrogeology[M]. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.
    [24]
    MOTT HENRY V, WEBER W. Diffusion of organic contaminants through soil-bentonite cut-off barriers[J]. Research Journal of the Water Pollution Control Federation, 1991, 63(2): 166-176.
    [25]
    PARKHURST D L, APPELO C. User's guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[J]. Model Tech B, 2013, 6: 497
    [26]
    张志红, 师玉敏, 朱敏. 黏土垫层水力-力学-化学耦合模型研究[J]. 岩土工程学报, 2016, 38(7): 1283-1290. doi: 10.11779/CJGE201607016

    ZHANG Zhihong, SHI Yumin, ZHU Min. Coupled hydro-mechanical-chemical model for clay liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1283-1290. (in Chinese) doi: 10.11779/CJGE201607016
    [27]
    BONAPARTE R, DANIEL D, KOERNER R M. Assessment and Recommendations for Improving the Performance of Waste Containment Systems[R]. Washington D C: EPA-Environmental Protection Agency, 2002.
    [28]
    詹良通, 刘伟, 曾兴, 等. 垃圾填埋场污染物击穿竖向防渗帷幕时间的影响因素分析及设计厚度的简化计算公式[J]. 岩土工程学报, 2013, 35(11): 1988-1996. http://cge.nhri.cn/cn/article/id/15328

    ZHAN Liangtong, LIU Wei, ZENG Xing, et al. Parametric study on breakthrough time of vertical cutoff wall for MSW landfills and simplified design formula for wall thickness[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1988-1996. (in Chinese) http://cge.nhri.cn/cn/article/id/15328
  • Cited by

    Periodical cited type(2)

    1. 刘芝刚,陈金湖. 新型桶式基础在上海洋山深水港中的应用. 港口航道与近海工程. 2024(06): 109-113+138 .
    2. 李恒达,贺亮亮,张宇飞,刘思维,雷超雯. 格构式双排桩板墙台地支护体系变形与受力特性分析. 结构工程师. 2023(06): 179-188 .

    Other cited types(0)

Catalog

    Article views (343) PDF downloads (98) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return