• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Chi, LIU Xiao-li, ZHANG Dong, WU Chun-lu, WANG En-zhi, WANG Si-jing. Dynamic model for water-rock interface of softening of soft rock and its evolution law[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2280-2289. DOI: 10.11779/CJGE202212015
Citation: LIU Chi, LIU Xiao-li, ZHANG Dong, WU Chun-lu, WANG En-zhi, WANG Si-jing. Dynamic model for water-rock interface of softening of soft rock and its evolution law[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2280-2289. DOI: 10.11779/CJGE202212015

Dynamic model for water-rock interface of softening of soft rock and its evolution law

More Information
  • Received Date: September 05, 2021
  • Available Online: December 13, 2022
  • The softening mechanism of soft rock is essentially the deterioration of microstructure caused by change of water-rock interface. The research on the water-rock interface is of great importance. Considering the general characteristics of the soft rock, from the idea of the inverse process of cemented diagenesis, the chemical element analysis of silty mudstone soak solution with different immersion time is carried out. The evolution process of microstructure of the soft rock is studied by using the polarized light micro-section. The concept of interfacial cemented bonding structure is proposed to investigate the established model for evolution of water-rock interface. Based on the diffusion theory, the theoretical equation describing the evolution of water-rock interface is derived and compared with the experimental results. The meso-softening damage factor of soft rock is proposed and deduced, and introduced into block discrete element simulation. The results show that the softening process of the soft rock is accompanied by the shedding and suspension of particles and the dissolution of soluble substances. Besides, the softening of the soft rock has obvious nonlinear dynamic characteristics. The fitting degree between the calculated values and the experimental results is relatively high, which verifies the reliability and rationality of the theoretical equation. The numerical results are in good agreement with the experimental ones.
  • [1]
    朱俊杰. 滇中红层软岩水–岩作用机理及时效性变形特性研究[D]. 成都: 成都理工大学, 2019.

    ZHU Jun-jie. Study on Water-Rock Mechanism and Time-Dependent Deformation Characteristics of Red Beds Soft Rock in Central Yunnan[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese)
    [2]
    何满潮. 软岩工程力学[M]. 北京: 科学出版社, 2002.

    HE Man-chao. Engineering Mechanics of Soft Rock[M]. Beijing: Science Press, 2002. (in Chinese)
    [3]
    冯启言, 韩宝平, 隋旺华. 鲁西南地区红层软岩水岩作用特征与工程应用[J]. 工程地质学报, 1999, 7(3): 266–271. doi: 10.3969/j.issn.1004-9665.1999.03.012

    FENG Qi-yan, HAN Bao-ping, SUI Wang-hua. Characteristics of water rock interaction of red beds and its application to engineering in southwestern Shandong[J]. Journal of Engineering Geology, 1999, 7(3): 266–271. (in Chinese) doi: 10.3969/j.issn.1004-9665.1999.03.012
    [4]
    周翠英, 谭祥韶, 邓毅梅, 等. 特殊软岩软化的微观机制研究[J]. 岩石力学与工程学报, 2005, 24(3): 394–400. doi: 10.3321/j.issn:1000-6915.2005.03.006

    ZHOU Cui-ying, TAN Xiang-shao, DENG Yi-mei, et al. Research on softening micro-mechanism of special soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 394–400. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.03.006
    [5]
    程强. 红层软岩开挖边坡致灾机理及防治技术研究[D]. 成都: 西南交通大学, 2008.

    CHENG Qiang. Study on Hazard Mechanism and Prevention Technology of Cutting Slope in Red Beds Soft Rock[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
    [6]
    刘光廷, 胡昱, 李鹏辉. 软岩遇水软化膨胀特性及其对拱坝的影响[J]. 岩石力学与工程学报, 2006, 25(9): 1729–1734. doi: 10.3321/j.issn:1000-6915.2006.09.001

    LIU Guang-ting, HU Yu, LI Peng-hui. Behavior of soaking rock and its effects on design of arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1729–1734. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.09.001
    [7]
    李洪志, 何满潮. 膨胀型软岩力学化学性质研究[J]. 煤, 1995(6): 9–12. https://www.cnki.com.cn/Article/CJFDTOTAL-MEIA506.002.htm

    LI Hong-zhi, HE Man-chao. Study on mechanical and chemical properties of swelled soft rock[J]. Coal, 1995(6): 9–12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MEIA506.002.htm
    [8]
    MORGENSTERN N R, EIGENBROD K D. Classification of argillaceous soils and rocks[J]. Journal of the Geotechnical Engineering Division, 1974, 100(10): 1137–1156. doi: 10.1061/AJGEB6.0000106
    [9]
    吴道祥, 刘宏杰, 王国强. 红层软岩崩解性室内试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 4173–4179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2104.htm

    WU Dao-xiang, LIU Hong-jie, WANG Guo-qiang. Laboratory experimental study of slaking characteristics of red-bed soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4173–4179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2104.htm
    [10]
    周翠英, 彭泽英, 尚伟, 等. 论岩土工程中水-岩相互作用研究的焦点问题——特殊软岩的力学变异性[J]. 岩土力学, 2002, 23(1): 124–128. doi: 10.3969/j.issn.1000-7598.2002.01.028

    ZHOU Cui-ying, PENG Ze-ying, SHANG Wei, et al. On the key problem of the water-rock interaction in geoengineering: mechanical variability of special weak rocks and some development trends[J]. Rock and Soil Mechanics, 2002, 23(1): 124–128. (in Chinese) doi: 10.3969/j.issn.1000-7598.2002.01.028
    [11]
    张丹, 陈安强, 刘刚才. 紫色泥岩水热条件下崩解过程的分维特性[J]. 岩土力学, 2012, 33(5): 1341–1346. doi: 10.3969/j.issn.1000-7598.2012.05.010

    ZHANG Dan, CHEN An-qiang, LIU Gang-cai. Disintegration characteristics of purple mudstone based on fractal dimension under hydrothermal condition[J]. Rock and Soil Mechanics, 2012, 33(5): 1341–1346. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.05.010
    [12]
    黄明, 詹金武. 酸碱溶液环境中软岩的崩解试验及能量耗散特征研究[J]. 岩土力学, 2015, 36(9): 2607–2612, 2623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509023.htm

    HUANG Ming, ZHAN Jin-wu. Disintegration tests and energy dissipation characteristics of soft rock in acid and alkali solution[J]. Rock and Soil Mechanics, 2015, 36(9): 2607–2612, 2623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509023.htm
    [13]
    杨建林, 王来贵, 李喜林, 等. 遇水–风干循环作用下泥岩断裂的微观机制研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 3606–3612. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2028.htm

    YANG Jian-lin, WANG Lai-gui, LI Xi-lin, et al. Research on micro-fracture mechanism of mudstone after wet-dry cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3606–3612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2028.htm
    [14]
    沈照理, 王焰新. 水–岩相互作用研究的回顾与展望[J]. 地球科学, 2002, 27(2): 127–133. doi: 10.3321/j.issn:1000-2383.2002.02.001

    SHEN Zhao-li, WANG Yan-xin. Review and outlook of water-rock interaction studies[J]. Earth Science, 2002, 27(2): 127–133. (in Chinese) doi: 10.3321/j.issn:1000-2383.2002.02.001
    [15]
    周翠英, 黄思宇, 刘镇, 等. 红层软岩软化的界面过程及其动力学模型[J]. 岩土力学, 2019, 40(8): 3189–3196, 3206. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908036.htm

    ZHOU Cui-ying, HUANG Si-yu, LIU Zhen, et al. The interface process and its dynamic model of red-bed soft rock softening[J]. Rock and Soil Mechanics, 2019, 40(8): 3189–3196, 3206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908036.htm
    [16]
    潘艺, 刘镇, 周翠英. 红层软岩遇水崩解特性试验及其界面模型[J]. 岩土力学, 2017, 38(11): 3231–3239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711020.htm

    PAN Yi, LIU Zhen, ZHOU Cui-ying. Experimental study of disintegration characteristics of red-bed soft rock within water and its interface model[J]. Rock and Soil Mechanics, 2017, 38(11): 3231–3239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711020.htm
    [17]
    陈瑜, 曹平, 蒲成志, 等. 水–岩作用对岩石表面微观形貌影响的试验研究[J]. 岩土力学, 2010, 31(11): 3452–3458. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201011017.htm

    CHEN Yu, CAO Ping, PU Cheng-zhi, et al. Experimental study of effect of water-rock interaction on micto-topography of rock surface[J]. Rock and Soil Mechanics, 2010, 31(11): 3452–3458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201011017.htm
    [18]
    CIANTIA M O, CASTELLANZA R, CROSTA G B, et al. Effects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks[J]. Engineering Geology, 2015, 184: 1–18.
    [19]
    卢良兆, 许文良. 岩石学[M]. 北京: 地质出版社, 2011.

    LU Liang-zhao, XU Wen-liang. Lithology[M]. Beijing: Geological Publishing House, 2011. (in Chinese)
    [20]
    GU D M, HUANG D A, ZHANG W G, et al. A 2D DEM-based approach for modeling water-induced degradation of carbonate rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104188–104188.
    [21]
    付腾飞, 徐涛, 朱万成, 等. 基于多晶离散元法的砂岩三轴压缩损伤特性[J]. 东北大学学报(自然科学版), 2020, 41(7): 968–974. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202007010.htm

    FU Teng-fei, XU Tao, ZHU Wan-cheng, et al. Damage compression based on polycrystalline discrete element method[J]. Journal of Northeastern University (Natural Science), 2020, 41(7): 968–974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202007010.htm
    [22]
    GHAZVINIAN E, DIEDERICHS M S, QUEY R. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 506–521.
  • Related Articles

    [1]Research on nonlinear constitutive model of interface considering cyclic softening[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240868
    [2]Analysis of mesoscopic damage evolution in freeze-thawed sandstone under dynamic disturbance[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241270
    [3]Study on elastoplastic constitutive model of granular materials considering meso-particle damage[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240110
    [4]XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
    [5]FU Yan, WANG Zi-juan, LIU Xin-rong, YUAN Wen, MIAO Lu-li, LIU Jun, DUN Zhi-yun. Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1653-1661. DOI: 10.11779/CJGE201709013
    [6]CAO Wen-gui, ZHANG Chao, HE Min, LIU Tao. Statistical damage simulation method of strain softening deformation process for rocks considering characteristics of void compaction stage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1754-1761. DOI: 10.11779/CJGE201610002
    [7]ZHU Jing-jing, LI Xi-bing, GONG Feng-qiang, WANG Shi-ming. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531-539.
    [8]LIANG Zhengzhao, YANG Tianhong, TANG Chunan, ZHANG Juanxia, TANG Shibin, YU Qinglei. Three-dimensional damage soften model for failure process of heterogeneous rocks and associated numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1447-1452.
    [9]GE Xiurun, REN Jianxi, PU Yibin, MA Wei, ZHU Yuanlin. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 191-195.
    [10]Li Guangping, Tao Zhenye. A Micromechanical Damage Model for Rocks Subjected to True Triaxial Stresses[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(1): 24-31.
  • Cited by

    Periodical cited type(8)

    1. 郑佳,刘嘉烈,李广辉,刘元元,王东,彭政,樊艳玲. 污染场地风险管控措施的效果及其环境启示:以西南某铬污染场地为例. 生态学杂志. 2024(04): 1209-1216 .
    2. 化天赐,李艳,黎晏彰,鲁安怀,丁竑瑞,王长秋,姬翔. 场地铬污染的微生物治理及资源化实验. 硅酸盐学报. 2024(10): 1-7 .
    3. 韩伟,赵瑞锋,石一辰,刘婉蓉,王玉晶,聂晶磊. 铬污染场地原位修复技术应用现状与展望. 环境工程技术学报. 2023(04): 1486-1496 .
    4. 靳敏,曹虎,韩伟. 污染场地修复中六价铬“反弹”和“拖尾”现象的成因分析与对策. 化工环保. 2023(04): 419-426 .
    5. 谭云龙. 岩土施工技术应用于污染场地修复中的问题及研究. 科技创新与应用. 2023(32): 62-65 .
    6. 李慧芳,陈文芳,陈磊磊,石巍巍,王瑞龙,师亚坤,景琦,王梦石. 原位化学修复技术在某Cr(Ⅵ)污染场地地下水应用研究. 水资源与水工程学报. 2022(03): 81-88 .
    7. 龙颖,钱林波,李云桂,董欣竹,魏子斐,张文影,梁聪,陈梦舫. 纳米零价铁修复氯代烃和铬污染场地研究进展. 环境科学与技术. 2022(03): 127-140 .
    8. 张瑞霞. 场地填土料污染状态下剪切力学特性分析研究. 水利科学与寒区工程. 2021(06): 42-46 .

    Other cited types(9)

Catalog

    Article views (241) PDF downloads (62) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return