• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIE Yi-fan, XIE Zhen-ze, WU Ji-chun, ZHANG Wei, XIE Chun-hong, LU Chun-hui. Multiscale finite element method–triple grid model for simulation of groundwater flows[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2081-2088. DOI: 10.11779/CJGE202211014
Citation: XIE Yi-fan, XIE Zhen-ze, WU Ji-chun, ZHANG Wei, XIE Chun-hong, LU Chun-hui. Multiscale finite element method–triple grid model for simulation of groundwater flows[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2081-2088. DOI: 10.11779/CJGE202211014

Multiscale finite element method–triple grid model for simulation of groundwater flows

More Information
  • Received Date: October 24, 2021
  • Available Online: December 08, 2022
  • The traditional finite element method often requires fine element grids to describle the heterogeneity of medium to ensure the accuracy for numerical modeling of groundwater, which leads to a large amount of calculation consumption. The multiscale finite element method can alleviate this problem, but it still needs a high cost to formulate the basis function when dealing with high computational complexity. A multiscale finite element method-triple grid model (MSFEM-T) is proposed for the simulation of groundwater flows. The MSFEM-T introduces an intermediate grid between the coarse grid and the fine grid, so that the basis function in the coarse grid can be established using the MSFEM instead of the FEM based on the intermediate and fine grids, therefore reducing the construction consumption of the basis function and improving the overall calculation efficiency. Moreover, the MSFEM-T uses an over-sampling method based on the coarse, intermediate and fine grids, which can further improve its calculation accuracy. The results show that the accuracy of the MSFEM-T is similar to that of the MSFEM and the finite element method of fine elements (LFEM-F), but the computational efficiency is much higher.
  • [1]
    陈雄, 张岩, 王艺伟, 等. 苏北沿海三市三维地下水流数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1434–1450. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201805036.htm

    CHEN Xiong, ZHANG Yan, WANG Yi-wei, et al. Numerical simulation of three dimensional groundwater flow in three coastal cities of north Jiangsu[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(5): 1434–1450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201805036.htm
    [2]
    YE S J, LUO Y, WU J C, et al. Three-dimensional numerical modeling of land subsidence in Shanghai, China[J]. Hydrogeology Journal, 2016, 24(3): 695–709. doi: 10.1007/s10040-016-1382-2
    [3]
    李宁, 杨敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140–1148, 1157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903035.htm

    LI Ning, YANG Min, LI Guo-feng. Revisiting the application of finite element method in geotechnical engineering[J]. Rock and Soil Mechanics, 2019, 40(3): 1140–1148, 1157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903035.htm
    [4]
    薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007.

    XUE Yu-qun, XIE Chun-hong. Numerical Simulation for Groundwater[M]. Beijing: Science Press, 2007. (in Chinese)
    [5]
    周杰, 汪德爟. 有限元水流计算中内存和运行效率初探[J]. 水科学进展, 2004, 15(5): 593–597. doi: 10.3321/j.issn:1001-6791.2004.05.010

    ZHOU Jie, WANG De-guan. Exploration on memory requirement and operation efficiency of finite element method in flow calculation[J]. Advances in Water Science, 2004, 15(5): 593–597. (in Chinese) doi: 10.3321/j.issn:1001-6791.2004.05.010
    [6]
    张丙印, 朱京义, 王昆泰. 非饱和土水气两相渗流有限元数值模型[J]. 岩土工程学报, 2002, 24(6): 701–705. doi: 10.3321/j.issn:1000-4548.2002.06.006

    ZHANG Bing-yin, ZHU Jing-yi, WANG Kun-tai. Finite element modeling of two-phase seepage in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 701–705. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.06.006
    [7]
    HOU T Y, WU X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1): 169–189. doi: 10.1006/jcph.1997.5682
    [8]
    YE S J, XUE Y Q, XIE C H. Application of the multiscale finite element method to flow in heterogeneous porous media[J]. Water Resources Research, 2004, 40(9): 337–348.
    [9]
    范颖, 王磊, 章青. 多尺度有限元法及其应用研究进展[J]. 水利水电科技进展, 2012, 32(3): 90–94. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201203025.htm

    FAN Ying, WANG Lei, ZHANG Qing. Research progress and application of multiscale finite element method[J]. Advances in Science and Technology of Water Resources, 2012, 32(3): 90–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201203025.htm
    [10]
    CHEN J, CHUNG E T, HE Z K, et al. Generalized multiscale approximation of mixed finite elements with velocity elimination for subsurface flow[J]. Journal of Computational Physics, 2020, 404: 109133. doi: 10.1016/j.jcp.2019.109133
    [11]
    CHEN Z M, HOU T. A mixed multiscale finite element method for elliptic problems with oscillating coefficients[J]. Mathematics of Computation, 2003, 72(242): 541–576.
    [12]
    JENNY P, LEE S H, TCHELEPI H A. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation[J]. Journal of Computational Physics, 2003, 187(1): 47–67. doi: 10.1016/S0021-9991(03)00075-5
    [13]
    贺新光, 任理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法: Ⅰ. 数值格式[J]. 水利学报, 2009, 40(1): 38–45, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200901007.htm

    HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media I. Numerical scheme[J]. Journal of Hydraulic Engineering, 2009, 40(1): 38–45, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200901007.htm
    [14]
    贺新光, 任理. 求解非均质多孔介质中非饱和水流问题的一种自适应多尺度有限元方法: Ⅱ. 数值结果[J]. 水利学报, 2009, 40(2): 138–144. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200902003.htm

    HE Xin-guang, REN Li. Adaptive multi-scale finite element method for unsaturated flow in heterogeneous porous media Ⅱ. Numerical results[J]. Journal of Hydraulic Engineering, 2009, 40(2): 138–144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200902003.htm
    [15]
    黄梦杰, 贺新光. 求解非均质多孔介质中随机水流问题的多尺度有限元降基方法[J]. 水资源与水工程学报, 2019, 30(6): 86–95. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201906014.htm

    HUANG Meng-jie, HE Xin-guang. Reduced multiscale finite element basis method for solving the stochastic water flow problems in heterogeneous porous media[J]. Journal of Water Resources and Water Engineering, 2019, 30(6): 86–95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201906014.htm
    [16]
    SHI L S, ZHANG D X, LIN L, et al. A multiscale probabilistic collocation method for subsurface flow in heterogeneous media[J]. Water Resources Research, 2010, 46(11): 386.
    [17]
    谢一凡, 吴吉春, 王益, 等. 一种模拟节点达西流速的多尺度有限元-有限元模型[J]. 岩土工程学报, 2022, 44(1): 107–114, 202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202201010.htm

    XIE Yi-fan, WU Ji-chun, WANG Yi, et al. Multiscale finite element-finite element model for simulating nodal Darcy velocity[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 107–114, 202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202201010.htm
    [18]
    SHI X Q, WU J C, YE S J, et al. Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China[J]. Engineering Geology, 2008, 100(1/2): 27–42.
    [19]
    XIE Y F, WU J C, XUE Y Q, et al. Modified multiscale finite-element method for solving groundwater flow problem in heterogeneous porous media[J]. Journal of Hydrologic Engineering, 2014, 19(8): 04014004.
    [20]
    XIE Y F, WU J C, XUE Y Q, et al. Efficient triple-grid multiscale finite element method for solving groundwater flow problems in heterogeneous porous media[J]. Transport in Porous Media, 2016, 112(2): 361–380.
    [21]
    DEUTSCH C V. GSLIB: Geostatistical Software Library and User's Guide[M]. 2nd ed. Oxford: Oxford University Press, 1998.
  • Cited by

    Periodical cited type(4)

    1. 秦悠,杜歆宇,马维嘉,吴琪,陈国兴. 不同初始剪应力下饱和珊瑚砂的液化特性. 哈尔滨工程大学学报. 2025(02): 197-204+209 .
    2. 魏怡童,杨洋. 基于剪切波速的地震液化概率性评估方法综述. 世界地震工程. 2025(02): 160-172 .
    3. Chen Guoxing,Qin You,Ma Weijia,Liang Ke,Wu Qi,C.Hsein Juang. Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings——a critical review. Earthquake Engineering and Engineering Vibration. 2024(01): 261-296 .
    4. 周正龙,华凌霄,徐令宇,赵凯,吴琪,陈国兴. 初始剪应力作用下饱和粉土液化流动特性试验研究. 岩土力学. 2024(11): 3295-3303 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return