• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Jianwei, ZHAO Congcong, YIN Yue, SHI Lei, BIAN Hanliang, HAN Zhiguang. Experimental study on solidification of silt through urease-producing strains induced by ultraviolet mutagenesis[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2500-2509. DOI: 10.11779/CJGE20221076
Citation: ZHANG Jianwei, ZHAO Congcong, YIN Yue, SHI Lei, BIAN Hanliang, HAN Zhiguang. Experimental study on solidification of silt through urease-producing strains induced by ultraviolet mutagenesis[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2500-2509. DOI: 10.11779/CJGE20221076

Experimental study on solidification of silt through urease-producing strains induced by ultraviolet mutagenesis

More Information
  • Received Date: August 29, 2022
  • Available Online: March 07, 2023
  • To improve the solidification effects of the microbially induced calcium carbonate precipitation (MICP) technology, the urease-producing strains are optimized by the ultraviolet (UV) mutagenesis. Subsequently, the modified bacterial strains are used to solidify silt by premixing bacterial with soil first and then injecting cementation solution (urea and calcium chloride) into soil. The unconfined compressive strength tests, calcium carbonate content determination and microscopic test analysis are conducted to comparatively study the curing effects of the strains before and after the UV mutagenesis. The results show that the UV mutagenesis technology can effectively improve the performance of the urease-producing bacterial strains, and increase the urease activity and the content of calcium carbonate produced by mineralization. The use of UV-induced bacterial strains to solidify silt can significantly improve the unconfined compressive strength of the soil. This study selects the excellent bacterial strains from the source and effectively improves the curing effects of the MICP technology.
  • [1]
    刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    LIU Hanlong, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
    [2]
    XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
    [3]
    CHU J, STABNIKOV V, IVANOV V, et al. Microbial method for construction of aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875. doi: 10.1680/geot.SIP13.P.007
    [4]
    XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
    [5]
    XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862. doi: 10.1139/cgj-2018-0573
    [6]
    MA G L, HE X A, JIANG X A, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, 2020, 58(7): 969-981.
    [7]
    黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306, 3316. doi: 10.16285/j.rsm.2020.0151

    HUANG Tao, FANG Xiangwei, ZHANG Wei, et al. Experimental study on solidified loess by microbes and reactive magnesium oxide[J]. Rock and Soil Mechanics, 2020, 41(10): 3300-3306, 3316. (in Chinese) doi: 10.16285/j.rsm.2020.0151
    [8]
    马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290-299. doi: 10.11779/CJGE202102009

    MA Guoliang, HE Xiang, LU Huaming, et al. Strength of biocemented coarse sand with Kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 290-299. (in Chinese) doi: 10.11779/CJGE202102009
    [9]
    郑俊杰, 宋杨, 吴超传, 等. 玄武岩纤维加筋微生物固化砂力学特性试验[J]. 华中科技大学学报(自然科学版), 2019, 47(12): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201912013.htm

    ZHENG Junjie, SONG Yang, WU Chaochuan, et al. Experimental study on mechanical properties of basalt fiber reinforced MICP-treated sand[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(12): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201912013.htm
    [10]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. doi: 10.11779/CJGE201604008

    HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) doi: 10.11779/CJGE201604008
    [11]
    李昊, 唐朝生, 尹黎阳, 等. MICP-FR协同作用改善钙质砂的力学性能及抗侵蚀试验研究[J]. 岩土工程学报, 2021, 43(10): 1941-1949. doi: 10.11779/CJGE202110021

    LI Hao, TANG Chaosheng, YIN Liyang, et al. Experimental study on surface erosion resistances and mechanical behavior of MICP-FR-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1941-1949. (in Chinese) doi: 10.11779/CJGE202110021
    [12]
    谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. doi: 10.11779/CJGE201904010

    XIE Yuehan, TANG Chaosheng, YIN Liyang, et al. Mechanical behavior of microbial-induced calcite precipitation(MICP)- treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) doi: 10.11779/CJGE201904010
    [13]
    肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511-519. doi: 10.11779/CJGE202103014

    XIAO Peng, LIU Hanlong, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. (in Chinese) doi: 10.11779/CJGE202103014
    [14]
    LI H, SONG Y X, LI Q J, et al. Effective microbial calcite precipitation by a new mutant and precipitating regulation of extracellular urease[J]. Bioresource Technology, 2014, 167: 269-275.
    [15]
    杜康, 李广悦, 丁德馨, 等. 产脲酶芽胞杆菌的微波诱变育种[J]. 微生物学杂志, 2016, 36(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWX201603005.htm

    DU Kang, LI Guangyue, DING Dexin, et al. Microwave mutation breeding for urease-producing sporoscarcina pasteurii[J]. Journal of Microbiology, 2016, 36(3): 20-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSWX201603005.htm
    [16]
    LIMA P S S, LUCCHESE A M, ARAÚJO-FILHO H G, et al. Inclusion of terpenes in cyclodextrins: preparation, characterization and pharmacological approaches[J]. Carbohydrate Polymers, 2016, 151: 965-987.
    [17]
    王传旭, 赵爱华, 于慧瑛, 等. 淀粉酶高产菌株的筛选、紫外诱变及产酶条件优化[J]. 微生物学通报, 2022, 49(5): 1759-1773. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202205018.htm

    WANG Chuanxu, ZHAO Aihua, YU Huiying, et al. Screening, UV mutagenesis, and production optimization of a strain with high yield of amylase[J]. Microbiology China, 2022, 49(5): 1759-1773. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202205018.htm
    [18]
    赵志峰, 曹晨, 刘鹏. 微生物矿化加固粉土的试验研究[J]. 中国矿业大学学报, 2021, 50(5): 955-962. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202105012.htm

    ZHAO Zhifeng, CAO Chen, LIU Peng. Experimental study of reinforcing silt based on mineralization of microorganism[J]. Journal of China University of Mining & Technology, 2021, 50(5): 955-962. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202105012.htm
    [19]
    刘堂浩, 李由然, 张梁, 等. 高通量筛选高产酪氨酸的酿酒酵母菌株[J]. 生物工程学报, 2021, 37(9): 3348-3360. https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU202109031.htm

    LIU Tanghao, LI Youran, ZHANG Liang, et al. High-throughput screening of Saccharomyces cerevisiae efficiently producing tyrosine[J]. Chinese Journal of Biotechnology, 2021, 37(9): 3348-3360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU202109031.htm
    [20]
    邵睿, 张倩, 宋炜钰, 等. 紫外诱变法选育酒酒球菌乙醇胁迫耐受菌株及其发酵性能研究[J]. 中国酿造, 2022, 41(7): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ202207013.htm

    SHAO Rui, ZHANG Qian, SONG Weiyu, et al. Breeding of Oenococcus oeni strain with ethanol tolerance by UV mutagenesis and its fermentation performance[J]. China Brewing, 2022, 41(7): 71-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ202207013.htm
    [21]
    董志红. 发酵法生产透明质酸的诱变育种及分子量可控工艺研究[D]. 杭州: 浙江工业大学, 2017.

    DONG Zhihong. Study on Strain Breeding and Process for Production of Hyaluronic Acid with Controllable Molecular Weight[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese)
    [22]
    马振贵, 马伟超, 蒲建平, 等. 马铃薯渣高效降解菌的紫外诱变选育及发酵试验[J]. 中国酿造, 2011, 30(1): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ201101040.htm

    MA Zhengui, MA Weichao, PU Jianping, et al. UV mutagenesis in efficient degradation strains of potato pulp and fermentation[J]. China Brewing, 2011, 30(1): 123-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ201101040.htm
    [23]
    季旭, 赵帅东, 周滟晴, 等. 透明质酸产生菌的紫外诱变及发酵工艺的优化[J]. 食品与发酵工业, 2021, 47(11): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202111025.htm

    JI Xu, ZHAO Shuaidong, ZHOU Yanqing, et al. UV mutagenesis and fermentation optimization of hyaluronic acid-producing strain[J]. Food and Fermentation Industries, 2021, 47(11): 158-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202111025.htm
    [24]
    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
    [25]
    建筑地基基础设计规范: GB 50007—2011[S]. 北京: 中国建筑工业出版社, 2011.

    Code for Design of Building Foundation: GB 50007—2011[S]. Beijing: China Construction Industry Press, 2011. (in Chinese)
    [26]
    朱效博, 赵志峰. 胶结液注入轮数和体积对微生物加固粉土的影响[J]. 防灾减灾工程学报, 2021, 41(3): 485-490, 548. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202103011.htm

    ZHU Xiaobo, ZHAO Zhifeng. Influence of number of rounds and volumes of cementation solution injection on improving silt by microbial method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(3): 485-490, 548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202103011.htm
    [27]
    彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. doi: 10.11779/CJGE201806010

    PENG Jie, FENG Qingpeng, SUN Yicheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. (in Chinese) doi: 10.11779/CJGE201806010
    [28]
    申泰铭, 解庆林, 李艳红, 等. 物理诱变育种技术在环境工程中的发展及运用[J]. 环境科学与管理, 2008, 33(6): 53-55, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200806017.htm

    SHEN Taiming, XIE Qinglin, LI Yanhong, et al. Application of physical mutagenesis in environmental engineering[J]. Environmental Science and Management, 2008, 33(6): 53-55, 68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ200806017.htm
    [29]
    夏金兰, 宁进军, 陈程浩, 等. 耐高温小球藻紫外诱变育种及其耐高温性质研究[J]. 中南大学学报(自然科学版), 2013, 44(3): 867-873. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303004.htm

    XIA Jinlan, NING Jinjun, CHEN Chenghao, et al. UV mutagenesis breeding for high temperature resisting Chlorella and its properties of thermotolerance[J]. Journal of Central South University (Science and Technology), 2013, 44(3): 867-873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303004.htm
    [30]
    肖瑶, 邓华锋, 李建林, 等. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究[J]. 岩土力学, 2022, 43(2): 395-404. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202011.htm

    XIAO Yao, DENG Huafeng, LI Jianlin, et al. Study on the domestication of Sporosarcina pasteurii and strengthening effect of calcareous sand in seawater environment[J]. Rock and Soil Mechanics, 2022, 43(2): 395-404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202011.htm
  • Related Articles

    [1]CHEN Kai, YAO Yangping, ZHU Binglong. Practical prediction method for settlement considering whole consolidation process[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 103-106. DOI: 10.11779/CJGE2024S20019
    [2]LI Bo, CHENG Wen-liang, XIANG Cun-ping, CHEN Jun-feng, YU Jian-fei. Prediction of post-construction settlement of soft foundation after large-area surcharge preloading treatment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 162-165. DOI: 10.11779/CJGE2021S2039
    [3]LI Shao-hong, WANG Shao-yang, ZHU Jian-dong, LI Bu, YANG Jie, WU Li-zhou. Prediction of rock burst tendency based on weighted fusion and improved cloud model[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1075-1083. DOI: 10.11779/CJGE201806013
    [4]LI Lin, LI Jing-pei, SUN De-an, ZHANG Ling-xiang. Prediction method for time-dependent load-settlement relationship of a jacked pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023
    [5]SHEN Jian, QIU Zi-feng, XU Xiao-yu. Effect of excavation of foundation pits on settlement and stability of buildings at top of slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 337-342. DOI: 10.11779/CJGE2014S2059
    [6]ZHANG Tao, CAI Guo-jun, LIU Song-yu. Settlement prediction of soft ground based on Weibull model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 212-216.
    [7]XUE Xiang, SONG Lian-liang, JIA Liang, LE Yuan, GE Hong. New prediction method for post-construction settlement of soft-soil roadbed of expressway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 125-130.
    [8]CHEN Yong-hui, SHI Gang-chuan, CAO De-hong, YING Hai-jian, WANG Xin-quan. Control of post-construction settlement by replacing subgrade with foamed cement banking[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1854-1862.
    [9]ZHU Zhiduo, ZHOU Lihong. Application of Logistic model in settlement prediction during complete process of embankment construction[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 965-969.
    [10]Settlement prediction methods considering creep[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 416-418.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return