• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xuetao, WANG Lizhong, HONNG Yi, GAO Zhiwei. Anisotropic critical state model for sand and evaluation of bearing capacity of plate anchors in sandy seabed[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2346-2356. DOI: 10.11779/CJGE20221010
Citation: WANG Xuetao, WANG Lizhong, HONNG Yi, GAO Zhiwei. Anisotropic critical state model for sand and evaluation of bearing capacity of plate anchors in sandy seabed[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2346-2356. DOI: 10.11779/CJGE20221010

Anisotropic critical state model for sand and evaluation of bearing capacity of plate anchors in sandy seabed

More Information
  • Received Date: August 16, 2022
  • Available Online: March 15, 2023
  • The fabric anisotropy and evolution of sand significantly affect its mechanical behavior, and thus play an important role in altering the bearing capacity of foundations (e.g., plate anchor) in sandy seabed. In this study, an elasto-plastic critical state model for sand considering fabric anisotropy and its evolution along with the non-coaxial plastic flow rule is developed within the framework of anisotropic critical state theory (ACST). The model is then implemented into the three-dimensional finite element program ABAQUS. By introducing the nonlocal plasticity theory, the mesh dependency caused by strain localization of sand is minimized. The predictive capacity of the proposed model is validated through the successful simulation of sand element tests subjected to various stress paths, and the centrifugal model tests on the pull-out behavior of the plate anchor in sand. The effects of fabric anisotropy on the pull-out responses of plate anchors in sandy seabed are investigated via parametric studies, which consider different levels of initial fabric anisotropy (sedimentation angle α0 =0°, 45°, 90°). It is revealed that: (1) For a given stress level and relative density of the sandy bed, the peak pull-out resistance of the plate anchor increases with α0. This is because the fabric of the soil along the sliding wedge (above the anchor) evolves faster at a higher α0 value, leading to a larger peak friction angle. (2) Ignoring the effects of fabric anisotropy leads to significant overestimation (by up to 100%) of the peak pull-out capacity of the plate anchor in sand, because the isotropic model that well predicts the triaxial compression behavior of sand will overestimate the strength of sand under other loading paths (such as triaxial extension and simple shear). (3) The traditional limit equilibrium analysis method does not consider the fabric anisotropy, and can only reasonably predict the pull-out capacity of the anchor plate when the sedimentation angle is α0=0°, but underestimates the scenarios of α0=45°, 90°.
  • [1]
    蒋明镜, 付昌, 刘静德, 等. 不同沉积方向各向异性结构性砂土离散元力学特性分析[J]. 岩土工程学报, 2016, 38(1): 138-146. doi: 10.11779/CJGE201601015

    JIANG Mingjing, FU Chang, LIU Jingde, et al. DEM simulations of anisotropic structured sand with different deposit directions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 138-146. (in Chinese) doi: 10.11779/CJGE201601015
    [2]
    姚仰平, 田雨, 刘林. 三维各向异性砂土UH模型[J]. 工程力学, 2018, 35(3): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201803006.htm

    YAO Yangping, TIAN Yu, LIU Lin. Three-dimensional anisotropic uh model for sands[J]. Engineering Mechanics, 2018, 35(3): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201803006.htm
    [3]
    宋飞, 张建民. 考虑侧向变形的各向异性砂土土压力试验研究[J]. 岩石力学与工程学报, 2009, 28(9): 1884-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909022.htm

    SONG Fei, ZHANG Jianmin. Experimental study of earth pressure for anisotropic sand considering lateral displacement[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1884-1895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909022.htm
    [4]
    杨仲轩, 李相崧, 明海燕. 砂土各向异性和不排水剪切特性研究[J]. 深圳大学学报(理工版), 2009, 26(2): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL200902011.htm

    YANG Zhongxuan, LI Xiangsong, MING Haiyan. Fabric anisotropy and undrained shear behavior of granular soil[J]. Journal of Shenzhen University Science and Engineering, 2009, 26(2): 158-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL200902011.htm
    [5]
    陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. doi: 10.11779/CJGE201802004

    CHEN Zhouquan, HUANG Maosong. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. (in Chinese) doi: 10.11779/CJGE201802004
    [6]
    吴则祥, 陈佳莹, 尹振宇. 考虑砂土初始各向异性的单剪试验模拟分析[J]. 岩土工程学报, 2021, 43(6): 1157-1165. doi: 10.11779/CJGE202106020

    WU Zexiang, CHEN Jiaying, YIN Zhenyu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. (in Chinese) doi: 10.11779/CJGE202106020
    [7]
    蒋明镜, 张安, 付昌, 等. 各向异性砂土宏微观特性三维离散元分析[J]. 岩土工程学报, 2017, 39(12): 2165-2172. doi: 10.11779/CJGE201712003

    JIANG Mingjing, ZHANG An, FU Chang, et al. Macro and micro-behaviors of anisotropy granular soils using 3D DEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2165-2172. (in Chinese) doi: 10.11779/CJGE201712003
    [8]
    LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263-275. doi: 10.1061/(ASCE)EM.1943-7889.0000324
    [9]
    路德春, 罗汀, 姚仰平. 砂土应力路径本构模型的试验验证[J]. 岩土力学, 2005, 26(5): 717-722. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200505009.htm

    LU Dechun, LUO Ting, YAO Yangping. Test validating of constitutive model of sand considering complex stress path[J]. Rock and Soil Mechanics, 2005, 26(5): 717-722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200505009.htm
    [10]
    GAO Z W, ZHAO J D, LI X S, et al. A critical state sand plasticity model accounting for fabric evolution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 370-390. doi: 10.1002/nag.2211
    [11]
    WANG R, DAFALIAS Y F, FU P C, et al. Fabric evolution and dilatancy within anisotropic critical state theory guided and validated by DEM[J]. International Journal of Solids and Structures, 2020, 188/189: 210-222.
    [12]
    YANG Z X, LIAO D, XU T T. A hypoplastic model for granular soils incorporating anisotropic critical state theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(6): 723-748.
    [13]
    董彤, 郑颖人, 孔亮, 等. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. doi: 10.11779/CJGE201804018

    DONG Tong, ZHENG Yingren, KONG Liang, et al. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. (in Chinese) doi: 10.11779/CJGE201804018
    [14]
    KAWAMURA S, MIURA S. Bearing capacity improvement of anisotropic sand ground[J]. Proceedings of the Institution of Civil Engineers - Ground Improvement, 2014, 167(3): 192-205.
    [15]
    KIMURA T, KUSAKABE O, SAITOH K. Geotechnical model tests of bearing capacity problems in a centrifuge[J]. Géotechnique, 1985, 35(1): 33-45.
    [16]
    GUO Peijun. Modified Direct Shear Test for Anisotropic Strength of Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1311-1318.
    [17]
    GAO Z W, LU D C, DU X L. Bearing capacity and failure mechanism of strip footings on anisotropic sand[J]. Journal of Engineering Mechanics, 2020, 146(8): 04020081.
    [18]
    CHALOULOS Y K, PAPADIMITRIOU A G, DAFALIAS Y F. Fabric effects on strip footing loading of anisotropic sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019068.
    [19]
    黄茂松, 钱建固, 吴世明. 饱和土体应变局部化的复合体理论[J]. 岩土工程学报, 2002, 24(1): 21-25. http://www.cgejournal.com/cn/article/id/10862

    HUANG Maosong, QIAN Jiangu, WU Shiming. A homogenization approach to localized deformation in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 21-25. (in Chinese) http://www.cgejournal.com/cn/article/id/10862
    [20]
    吕玺琳, 黄茂松, 钱建固. 基于非共轴本构模型的砂土真三轴试验分叉分析[J]. 岩土工程学报, 2008, 30(5): 646-651. http://www.cgejournal.com/cn/article/id/12842

    LÜ Xilin, HUANG Maosong, QIAN Jiangu. Bifurcation analysis in true traxial tests on sands based on non-coaxial elasto-plasticity model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 646-651. (in Chinese) http://www.cgejournal.com/cn/article/id/12842
    [21]
    LU X L, BARDET J P, HUANG M S. Spectral analysis of nonlocal regularization in two-dimensional finite element models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(2): 219-235.
    [22]
    MALLIKARACHCHI H, SOGA K. Post-localisation analysis of drained and undrained dense sand with a nonlocal critical state model[J]. Computers and Geotechnics, 2020, 124: 103572.
    [23]
    SLOAN S W. Substepping schemes for the numerical integration of elastoplastic stress-strain relations[J]. International Journal for Numerical Methods in Engineering, 1987, 24(5): 893-911.
    [24]
    HUGHES T J R, WINGET J. Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis[J]. International Journal for Numerical Methods in Engineering, 1980, 15(12): 1862-1867.
    [25]
    LAM W K, TATSUOKA F. Effects of initial anisotropic fabric and σ2 on strength and deformation characteristics of sand[J]. Soils and Foundations, 1988, 28(1): 89-106.
    [26]
    YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188.
    [27]
    HAO D X, WANG D, O'LOUGHLIN C D, et al. Tensile monotonic capacity of helical anchors in sand: interaction between helices[J]. Canadian Geotechnical Journal, 2019, 56(10): 1534-1543.
    [28]
    王栋, 胡玉霞. 方形平板锚抗拉承载力的大变形有限元分析[J]. 岩土力学, 2008, 29(8): 2081-2086. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808015.htm

    WANG Dong, HU Yuxia. Large deformation finite element analyses of uplift capacity of square plate anchors[J]. Rock and Soil Mechanics, 2008, 29(8): 2081-2086. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808015.htm

Catalog

    Article views (392) PDF downloads (140) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return