• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Cai-jin, CAI Guo-jun, WU Meng, LIU Xue-ning, LIU Song-yu. Prediction of thermal conductivity of soils based on artificial intelligence algorithm[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016
Citation: WANG Cai-jin, CAI Guo-jun, WU Meng, LIU Xue-ning, LIU Song-yu. Prediction of thermal conductivity of soils based on artificial intelligence algorithm[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016

Prediction of thermal conductivity of soils based on artificial intelligence algorithm

More Information
  • Received Date: April 21, 2021
  • Available Online: December 11, 2022
  • The thermal conductivity is the basic geotechnical thermodynamic parameter, and it is also one of the important parameters in the design of thermal geotechnical structures. It is affected by the factors such as soil skeleton mineral composition, and degree of saturation. The influencing factors for the thermal conductivity of soils are analyzed. Various advanced artificial intelligence algorithms are used to investigate the heat transfer mechanism of soils, and to establish prediction models. The correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and variance ratio (VAF) are calculated to analyze the prediction error and robustness of these prediction models. By comparing withthe traditional empirical relationship model, the results show that the artificial neural network (ANN) model, the adaptive neural network-based fuzzy inference system (ANFIS) model and the support vector machine (SVM) model all predict the thermal conductivity of soils acceptably. The R2 is greater than 0.9, the RMSE is less than 0.2 (W·m-1·K-1), the MAE is less than 0.13 (W·m-1·K-1), and the VAF is greater than 88% for all these prediction models. The accuracy of the proposed prediction models is significantly higher than that of the traditional empirical relationship model. According to the results of error statistics and robustness analysis, the ANN and SVM models are recommended in the prediction of the thermal conductivity of soils.
  • [1]
    桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087–1094. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15748.shtml

    GUI Shu-qiang, CHENG Xiao-hui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087–1094. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15748.shtml
    [2]
    ZOU H F, ZHANG N, PUPPALA A J. Improving a thermal conductivity model of unsaturated soils based on multivariate distribution analysis[J]. Acta Geotechnica, 2019, 14(6): 2007–2029. doi: 10.1007/s11440-019-00837-3
    [3]
    徐婕, 朱合华, 闫治国. 淤泥质黏土火灾高温下导热系数的试验研究[J]. 岩土工程学报, 2012, 34(11): 2108–2113. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14902.shtml

    XU Jie, ZHU He-hua, YAN Zhi-guo. Experimental studies on coefficient of thermal conductivity of silty clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2108–2113. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14902.shtml
    [4]
    KERSTEN M S. Laboratory Research for the Determination of the Thermal Properties of Soils[R]. Minneapolis, USA: University of Minnesota Engineering Experiment Station, 1949.
    [5]
    CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443–458. doi: 10.1139/t04-106
    [6]
    JOHANSEN O. Thermal Conductivity of Soils[R]. Trondheim: Defense Technical Information Center, 1975.
    [7]
    ERZIN Y, RAO B H, SINGH D N. Artificial neural network models for predicting soil thermal resistivity[J]. International Journal of Thermal Sciences, 2008, 47(10): 1347–1358. doi: 10.1016/j.ijthermalsci.2007.11.001
    [8]
    张涛, 刘松玉, 蔡国军, 等. 木质素改良粉土热学与力学特性相关性试验研究[J]. 岩土工程学报, 2015, 37(10): 1876–1885. doi: 10.11779/CJGE201510016

    ZHANG Tao, LIU Song-yu, CAI Guo-jun, et al. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1876–1885. (in Chinese) doi: 10.11779/CJGE201510016
    [9]
    TARNAWSKI V R, MCCOMBIE M L, LEONG W H, et al. Canadian field soils II: modeling of quartz occurrence[J]. International Journal of Thermophysics, 2012, 33(5): 843–863. doi: 10.1007/s10765-012-1184-2
    [10]
    TARNAWSKI V R, MOMOSE T, MCCOMBIE M L, et al. Canadian field soils III: thermal-conductivity data and modeling[J]. International Journal of Thermophysics, 2015, 36(1): 119–156. doi: 10.1007/s10765-014-1793-z
    [11]
    TARNAWSKI V R, LEONG W H. Advanced geometric mean model for predicting thermal conductivity of unsaturated soils[J]. International Journal of Thermophysics, 2016, 37(2): 1–42.
    [12]
    刘路路, 蔡国军, 刘晓燕, 等. 基于热探针测试的橡胶-砂颗粒轻质混合填料导热系数影响因素研究[J]. 土木工程学报, 2019, 52(增刊1): 31–35. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1005.htm

    LIU Lu-lu, CAI Guo-jun, LIU Xiao-yan, et al. Influence factors of thermal conductivity of rubber-sand lightweight mixture based on thermal probe test[J]. China Civil Engineering Journal, 2019, 52(S1): 31–35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1005.htm
    [13]
    CHEN S X. Thermal conductivity of sands[J]. Heat and Mass Transfer, 2008, 44(10): 1241–1246. doi: 10.1007/s00231-007-0357-1
    [14]
    HORAI K I, SIMMONS G. Thermal conductivity of rock-forming minerals[J]. Earth and Planetary Science Letters, 1969, 6(5): 359–368.
    [15]
    MACAULAY B D, BOUAZZA A, SINGH R M, et al. Thermal conductivity of soils and rocks from the Melbourne (Australia) region[J]. Engineering Geology, 2013, 164: 131–138.
    [16]
    XU Y S, SUN D A, ZENG Z T, et al. Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository[J]. Applied Clay Science, 2019, 174: 10–14.
    [17]
    王才进, 张涛, 骆俊晖, 等. 神经网络反馈分析方法预测土体热阻系数研究[J]. 岩土工程学报, 2019, 41(增刊2): 109–112. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17860.shtml

    WANG Cai-jin, ZHANG Tao, LUO Jun-hui, et al. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 109–112. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17860.shtml
    [18]
    MØLLER M F. A scaled conjugate gradient algorithm for fast supervised learning[J]. Neural Networks, 1993, 6(4): 525–533.
    [19]
    BURDEN F, WINKLER D. Bayesian regularization of neural networks[J]. Methods in Molecular Biology (Clifton, N J), 2008, 458(3): 25–44.
    [20]
    FATTAHI H. Indirect estimation of deformation modulus of an in situ rock mass: an ANFIS model based on grid partitioning, fuzzy c-means clustering and subtractive clustering[J]. Geosciences Journal, 2016, 20(5): 681–690.
    [21]
    倪沙沙, 迟世春. 基于粒子群支持向量机的高心墙堆石坝渗透系数反演[J]. 岩土工程学报, 2017, 39(4): 727–734. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16887.shtml

    NI Sha-sha, CHI Shi-chun. Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 727–734. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16887.shtml
    [22]
    PHAM B T, LE L M, LE T T, et al. Development of advanced artificial intelligence models for daily rainfall prediction[J]. Atmospheric Research, 2020, 237: 104845.
    [23]
    SOIZE C. Stochastic Models of Uncertainties in Computational Mechanics[M]. Reston V A: American Society of Civil Engineers, 2012.
    [24]
    ABEDINI M, GHASEMIAN B, SHIRZADI A, et al. A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment[J]. Geocarto International, 2019, 34(13): 1427–1457.
    [25]
    LU S, REN T S, GONG Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1): 8–14.
    [26]
    DE VRIES D A. Thermal Properties of Soils[M]// Physics of the Plant Environment. VAN WIJK W R. New York: John Wiley & Sons, 1963: 210–235.
    [27]
    SASS J H, LACHENBRUCH A H, MUNROE R J. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations[J]. Journal of Geophysical Research Atmospheres, 1971, 76(14): 3391–3401.
  • Related Articles

    [1]Predictive model of solute transport processes in fractured rock based on geometric features[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240355
    [2]CHE Dongze, ZENG Zhaotian, LIN Mingyu, YANG Chenglin, FU Huili. Thermal conductivity of calcareous sand and its prediction model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 71-74. DOI: 10.11779/CJGE2023S10010
    [3]LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985
    [4]XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243
    [5]ZHOU Yin-kang, YAN Chang-hong, ZHENG Jun, XIE Sheng-hua, XIANG Guo-sheng. Mesoscale model for thermal conductivity of compacted dual-porosity bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1352-1359. DOI: 10.11779/CJGE202107022
    [6]TAN Yun-zhi, YU Bo, HU Xin-jiang, LIU Xiao-ling. Prediction model for thermal conductivity of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 129-133.
    [7]SONG Jian, GAO Guang-yun. Empirical predictive model for seismic displacement of slopes under velocity pulse-like ground motions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2009-2017.
    [8]XU Guang-xing, YAO Ling-kan, LI Chao-hong, WANG Xiao-fang. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1131-1136.
    [9]SU Yong-hua, LI Xiang. Robust reliability analysis for underground structures based on Info-Gap theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 227.
    [10]FENG Yuguo, WANG Weiming, LIU Junxi. Robust optimization design of anti-slide piles with prestressed anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 515-520.

Catalog

    Article views (309) PDF downloads (85) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return