Citation: | WANG Cai-jin, CAI Guo-jun, WU Meng, LIU Xue-ning, LIU Song-yu. Prediction of thermal conductivity of soils based on artificial intelligence algorithm[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016 |
[1] |
桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087–1094. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15748.shtml
GUI Shu-qiang, CHENG Xiao-hui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087–1094. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15748.shtml
|
[2] |
ZOU H F, ZHANG N, PUPPALA A J. Improving a thermal conductivity model of unsaturated soils based on multivariate distribution analysis[J]. Acta Geotechnica, 2019, 14(6): 2007–2029. doi: 10.1007/s11440-019-00837-3
|
[3] |
徐婕, 朱合华, 闫治国. 淤泥质黏土火灾高温下导热系数的试验研究[J]. 岩土工程学报, 2012, 34(11): 2108–2113. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14902.shtml
XU Jie, ZHU He-hua, YAN Zhi-guo. Experimental studies on coefficient of thermal conductivity of silty clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2108–2113. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14902.shtml
|
[4] |
KERSTEN M S. Laboratory Research for the Determination of the Thermal Properties of Soils[R]. Minneapolis, USA: University of Minnesota Engineering Experiment Station, 1949.
|
[5] |
CÔTÉ J, KONRAD J M. A generalized thermal conductivity model for soils and construction materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443–458. doi: 10.1139/t04-106
|
[6] |
JOHANSEN O. Thermal Conductivity of Soils[R]. Trondheim: Defense Technical Information Center, 1975.
|
[7] |
ERZIN Y, RAO B H, SINGH D N. Artificial neural network models for predicting soil thermal resistivity[J]. International Journal of Thermal Sciences, 2008, 47(10): 1347–1358. doi: 10.1016/j.ijthermalsci.2007.11.001
|
[8] |
张涛, 刘松玉, 蔡国军, 等. 木质素改良粉土热学与力学特性相关性试验研究[J]. 岩土工程学报, 2015, 37(10): 1876–1885. doi: 10.11779/CJGE201510016
ZHANG Tao, LIU Song-yu, CAI Guo-jun, et al. Experimental study on relationship between thermal and mechanical properties of treated silt by lignin[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1876–1885. (in Chinese) doi: 10.11779/CJGE201510016
|
[9] |
TARNAWSKI V R, MCCOMBIE M L, LEONG W H, et al. Canadian field soils II: modeling of quartz occurrence[J]. International Journal of Thermophysics, 2012, 33(5): 843–863. doi: 10.1007/s10765-012-1184-2
|
[10] |
TARNAWSKI V R, MOMOSE T, MCCOMBIE M L, et al. Canadian field soils III: thermal-conductivity data and modeling[J]. International Journal of Thermophysics, 2015, 36(1): 119–156. doi: 10.1007/s10765-014-1793-z
|
[11] |
TARNAWSKI V R, LEONG W H. Advanced geometric mean model for predicting thermal conductivity of unsaturated soils[J]. International Journal of Thermophysics, 2016, 37(2): 1–42.
|
[12] |
刘路路, 蔡国军, 刘晓燕, 等. 基于热探针测试的橡胶-砂颗粒轻质混合填料导热系数影响因素研究[J]. 土木工程学报, 2019, 52(增刊1): 31–35. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1005.htm
LIU Lu-lu, CAI Guo-jun, LIU Xiao-yan, et al. Influence factors of thermal conductivity of rubber-sand lightweight mixture based on thermal probe test[J]. China Civil Engineering Journal, 2019, 52(S1): 31–35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1005.htm
|
[13] |
CHEN S X. Thermal conductivity of sands[J]. Heat and Mass Transfer, 2008, 44(10): 1241–1246. doi: 10.1007/s00231-007-0357-1
|
[14] |
HORAI K I, SIMMONS G. Thermal conductivity of rock-forming minerals[J]. Earth and Planetary Science Letters, 1969, 6(5): 359–368.
|
[15] |
MACAULAY B D, BOUAZZA A, SINGH R M, et al. Thermal conductivity of soils and rocks from the Melbourne (Australia) region[J]. Engineering Geology, 2013, 164: 131–138.
|
[16] |
XU Y S, SUN D A, ZENG Z T, et al. Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository[J]. Applied Clay Science, 2019, 174: 10–14.
|
[17] |
王才进, 张涛, 骆俊晖, 等. 神经网络反馈分析方法预测土体热阻系数研究[J]. 岩土工程学报, 2019, 41(增刊2): 109–112. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17860.shtml
WANG Cai-jin, ZHANG Tao, LUO Jun-hui, et al. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 109–112. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17860.shtml
|
[18] |
MØLLER M F. A scaled conjugate gradient algorithm for fast supervised learning[J]. Neural Networks, 1993, 6(4): 525–533.
|
[19] |
BURDEN F, WINKLER D. Bayesian regularization of neural networks[J]. Methods in Molecular Biology (Clifton, N J), 2008, 458(3): 25–44.
|
[20] |
FATTAHI H. Indirect estimation of deformation modulus of an in situ rock mass: an ANFIS model based on grid partitioning, fuzzy c-means clustering and subtractive clustering[J]. Geosciences Journal, 2016, 20(5): 681–690.
|
[21] |
倪沙沙, 迟世春. 基于粒子群支持向量机的高心墙堆石坝渗透系数反演[J]. 岩土工程学报, 2017, 39(4): 727–734. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16887.shtml
NI Sha-sha, CHI Shi-chun. Back analysis of permeability coefficient of high core rockfill dam based on particle swarm optimization and support vector machine[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 727–734. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16887.shtml
|
[22] |
PHAM B T, LE L M, LE T T, et al. Development of advanced artificial intelligence models for daily rainfall prediction[J]. Atmospheric Research, 2020, 237: 104845.
|
[23] |
SOIZE C. Stochastic Models of Uncertainties in Computational Mechanics[M]. Reston V A: American Society of Civil Engineers, 2012.
|
[24] |
ABEDINI M, GHASEMIAN B, SHIRZADI A, et al. A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment[J]. Geocarto International, 2019, 34(13): 1427–1457.
|
[25] |
LU S, REN T S, GONG Y S, et al. An improved model for predicting soil thermal conductivity from water content at room temperature[J]. Soil Science Society of America Journal, 2007, 71(1): 8–14.
|
[26] |
DE VRIES D A. Thermal Properties of Soils[M]// Physics of the Plant Environment. VAN WIJK W R. New York: John Wiley & Sons, 1963: 210–235.
|
[27] |
SASS J H, LACHENBRUCH A H, MUNROE R J. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations[J]. Journal of Geophysical Research Atmospheres, 1971, 76(14): 3391–3401.
|
[1] | Predictive model of solute transport processes in fractured rock based on geometric features[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240355 |
[2] | CHE Dongze, ZENG Zhaotian, LIN Mingyu, YANG Chenglin, FU Huili. Thermal conductivity of calcareous sand and its prediction model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 71-74. DOI: 10.11779/CJGE2023S10010 |
[3] | LIU Zhixia, GUO Chengchao, ZHU Honghu, CAO Dingfeng, HUANG Rui, WANG Fuming, DONG Pu. Modified Côté-Konrad model for describing relationship between thermal conductivity and water content of coral calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2319-2326. DOI: 10.11779/CJGE20220985 |
[4] | XU Yunshan, XIAO Zilong, SUN Dean, CHEN Junhao, ZENG Zhaotian. Temperature effects and prediction model of thermal conductivity of soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1180-1189. DOI: 10.11779/CJGE20220243 |
[5] | ZHOU Yin-kang, YAN Chang-hong, ZHENG Jun, XIE Sheng-hua, XIANG Guo-sheng. Mesoscale model for thermal conductivity of compacted dual-porosity bentonite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1352-1359. DOI: 10.11779/CJGE202107022 |
[6] | TAN Yun-zhi, YU Bo, HU Xin-jiang, LIU Xiao-ling. Prediction model for thermal conductivity of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 129-133. |
[7] | SONG Jian, GAO Guang-yun. Empirical predictive model for seismic displacement of slopes under velocity pulse-like ground motions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2009-2017. |
[8] | XU Guang-xing, YAO Ling-kan, LI Chao-hong, WANG Xiao-fang. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1131-1136. |
[9] | SU Yong-hua, LI Xiang. Robust reliability analysis for underground structures based on Info-Gap theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 227. |
[10] | FENG Yuguo, WANG Weiming, LIU Junxi. Robust optimization design of anti-slide piles with prestressed anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 515-520. |