• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Zhi, LIU Fushen, YANG Zhongxuan, ZHAN Wei. Thermo-mechanical behavior of energy piles based on coupled THM model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2129-2138. DOI: 10.11779/CJGE20220920
Citation: LI Zhi, LIU Fushen, YANG Zhongxuan, ZHAN Wei. Thermo-mechanical behavior of energy piles based on coupled THM model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2129-2138. DOI: 10.11779/CJGE20220920

Thermo-mechanical behavior of energy piles based on coupled THM model

More Information
  • Received Date: July 24, 2022
  • Available Online: October 16, 2023
  • The energy piles can underpin the superstructures and provide low-carbon, environmentally friendly and sustainable cooling/heating functions, leading to ever-growing attention received from the civil and energy industries. The thermo-hydro-mechanical (THM) coupling may significantly affect the interaction between the energy piles and the surrounding soils, and thus the load-bearing and deformation characteristics. In this study, the basic governing equations for full THM coupling are derived based on the standard mixture theory of porous media. The finite element method THM for and its implementation in COMSOL software are verified through comparisons with the analytical solutions to the saturated non-isothermal consolidation problem. Based on the THM coupled framework, a two-dimensional finite element model for the energy piles is further established considering the change of fluid properties with temperature and different pile-soil contact models, and the specific configuration and modeling procedures are described. The results indicate that the proposed model can predict the distribution and evolution of stresses, strains and displacements on the energy piles, and further capture the multi-physical behaviors associated with the piles and soils. This study highlights the importance of the consideration of THM coupling effects, which can provide a useful guidance for the multi-physical problems involved in the design, construction and utilization of the energy piles.
  • [1]
    LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763-781. doi: 10.1002/nag.499
    [2]
    BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248. doi: 10.1680/geot.2009.59.3.237
    [3]
    桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. doi: 10.11779/CJGE201406014

    GUI Shuqiang, CHENG Xiaohui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese) doi: 10.11779/CJGE201406014
    [4]
    路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334-342. doi: 10.11779/CJGE201702018

    LU Hongwei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. (in Chinese) doi: 10.11779/CJGE201702018
    [5]
    STEWART M A, MCCARTNEY J S. Centrifuge modeling of soil-structure interaction in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013044. doi: 10.1061/(ASCE)GT.1943-5606.0001061
    [6]
    GOODE Ⅲ J C, MCCARTNEY J S. Centrifuge modeling of end-restraint effects in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(8): 04015034. doi: 10.1061/(ASCE)GT.1943-5606.0001333
    [7]
    NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of heating effects on energy pile performance in saturated sand[J]. Canadian Geotechnical Journal, 2015, 52(8): 1045-1057. doi: 10.1139/cgj-2014-0301
    [8]
    黄旭, 孔纲强, 刘汉龙, 等. 循环温度场作用下PCC能量桩热力学特性模型试验研究[J]. 岩土力学, 2015, 36(3): 667-673. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503010.htm

    HUANG Xu, KONG Gangqiang, LIU Hanlong, et al. Experimental research on thermomechanical characteristics of PCC energy pile under cyclic temperature field[J]. Rock and Soil Mechanics, 2015, 36(3): 667-673. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503010.htm
    [9]
    孔纲强, 王成龙, 刘汉龙, 等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 958-964. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704006.htm

    Kong Gangqiang, WANG Chenglong, Liu Hanlong, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38(4): 958-964. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704006.htm
    [10]
    WANG W, REGUEIRO R A, STEWART M, et al. Coupled thermo-poro-mechanical finite element analysis of an energy foundation centrifuge experiment in saturated silt[M]// GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering. New York: Curran Associates Inc, 2012: 4406-4415.
    [11]
    WANG W. Coupled Thermo-Poro-Mechanical Axisymmetric Finite Element Modeling of Soil-Structure Interaction in Partially Saturated Soils[D]. Boulder: University of Colorado at Boulder, 2014.
    [12]
    LORIA A F R, GUNAWAN A, SHI C, et al. Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads[J]. Geomechanics for Energy and the Environment, 2015, 1: 1-15. doi: 10.1016/j.gete.2015.03.002
    [13]
    LORIA A F R, DI DONNA A, LALOUI L. Numerical study on the suitability of centrifuge testing for capturing the thermal-induced mechanical behavior of energy piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(10): 04015042. doi: 10.1061/(ASCE)GT.1943-5606.0001318
    [14]
    SAGGU R, CHAKRABORTY T. Cyclic thermo-mechanical analysis of energy piles in sand[J]. Geotechnical and Geological Engineering, 2015, 33(2): 321-342. doi: 10.1007/s10706-014-9798-8
    [15]
    SAGGU R, CHAKRABORTY T. Thermomechanical analysis and parametric study of geothermal energy piles in sand[J]. International Journal of Geomechanics, 2017, 17(9): 04017076. doi: 10.1061/(ASCE)GM.1943-5622.0000962
    [16]
    DI DONNA A, LORIA A F R, LALOUI L. Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads[J]. Computers and Geotechnics, 2016, 72: 126-142. doi: 10.1016/j.compgeo.2015.11.010
    [17]
    RUI Y, SOGA K. Thermo-hydro-mechanical coupling analysis of a thermal pile[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2019, 172(2): 155-173. doi: 10.1680/jgeen.16.00133
    [18]
    王成龙, 刘汉龙, 孔纲强, 等. 不同刚度约束对能量桩应力和位移的影响研究[J]. 岩土力学, 2018, 39(11): 4261-4268. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811043.htm

    WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Study on stress and displacement of energy pile influenced by pile tip stiffness[J]. Rock and Soil Mechanics, 2018, 39(11): 4261-4268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811043.htm
    [19]
    李翔宇, 郭红仙, 程晓辉. 能源桩温度分布的试验与数值研究[J]. 土木工程学报, 2016, 49(4): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604012.htm

    LI Xiangyu, GUO Hongxian, CHENG Xiaohui. Experimental and numerical study on temperature distribution in energy piles[J]. China Civil Engineering Journal, 2016, 49(4): 102-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604012.htm
    [20]
    COUSSY O. A general theory of thermoporoelastoplasticity for saturated porous materials[J]. Transport in porous media, 1989, 4(3): 281-293.
    [21]
    BOOKER J R, SAVVIDOU C. Consolidation around a point heat source[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(2): 173-184.
    [22]
    BAI M, ABOUSLEIMAN Y. Thermoporoelastic coupling with application to consolidation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2): 121-132.
    [23]
    COUSSY O. Poromechanics[M]. New York: John Wiley & Sons, 2004.
    [24]
    OLIVELLA S, GENS A, CARRERA J, et al. Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media[J]. Engineering computations, 1996, 13(7): 87-112.
    [25]
    DE BOER R. Trends in Continuum Mechanics of Porous Media[M]. Dordrecht: Springer, 2005.
    [26]
    LEWIS R W, MAJORANA C E, SCHREFLER B A. A coupled finite element model for the consolidation of nonisothermal elastoplastic porous media[J]. Transport in porous media, 1986, 1(2): 155-178.
    [27]
    ADINOLFI M, MAIORANO R M S, MAURO A, et al. On the influence of thermal cycles on the yearly performance of an energy pile[J]. Geomechanics for Energy and the Environment, 2018, 16: 32-44.
    [28]
    COMSOL Inc. COMSOL Multiphysics User's Guide and Reference Manual, Version 5.6[M]. Burlington: COMSOL Inc., 2020.
    [29]
    SALCIARINI D, RONCHI F, TAMAGNINI C. Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: a parametric study[J]. Acta Geotechnica, 2017, 12(4): 703-728.
    [30]
    田婉琪, 程晓辉, 关文, 等. 考虑地基刚度分区的能源支护桩有限元模拟[J]. 防灾减灾工程学报, 2022, 42(5): 922-928. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202205006.htm

    TIAN Wanqi, CHENG Xiaohui, GUAN Wen, et al. Finite element simulation of energy supporting piles considering stiffness zoning of foundation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(5): 922-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202205006.htm
    [31]
    KNELLWOLF C, PERON H, LALOUI L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890-902.
    [32]
    SUTMAN M, OLGUN C G, LALOUI L. Cyclic load–transfer approach for the analysis of energy piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(1): 04018101.
    [33]
    LALOUI L, MORENI M, VULLIET L. Comportement d'un pieu bi-fonction, fondation et échangeur de chaleur[J]. Canadian Geotechnical Journal, 2003, 40(2): 388-402. (LALOUI L, MORENI M, VULLIET L. Behaviour of a bi-functional pile, foundation and heat exchanger[J]. Canadian Geotechnical Journal, 2003, 40(2): 388-402. (in French))
    [34]
    RANDOLPH M F, WROTH C P. Application of the failure state in undrained simple shear to the shaft capacity of driven piles[J]. Géotechnique, 1981, 31(1): 143-157.
    [35]
    KRAFT Jr L M. Computing axial pile capacity in sands for offshore conditions[J]. Marine Georesources & Geotechnology, 1990, 9(1): 61-92.
  • Cited by

    Periodical cited type(13)

    1. 吕晶,赵欢,张金翼,席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能. 材料导报. 2024(07): 97-103 .
    2. 李治斌,刘利骄,黄帅,丁琳,柳艳杰. 冻结二灰固化碳酸盐渍土及损伤模型研究. 长江科学院院报. 2024(07): 118-125 .
    3. 李博,石振武,刘俊辰,张洪瑞. 复合改良黄土状亚砂土强度特性及微观机制. 硅酸盐通报. 2023(01): 373-382 .
    4. 田野. 以顶面回弹模量为目标的铁路货场地基换填方法研究. 长沙理工大学学报(自然科学版). 2023(01): 58-64 .
    5. 李治斌,苏安双,张晓东,刘利骄,刘春龙,丁琳,徐凡林,李震威. 冻融循环作用下东北盐渍土地区路基填料改良试验研究. 森林工程. 2023(02): 139-147 .
    6. 马晓武,马云峰,刘安龙,唐磊,殷珂,蓟文豪. 水泥及压实度对重塑黄土强度影响的试验研究. 公路. 2023(03): 309-315 .
    7. 唐鑫,张吾渝,何蓓,董超凡,刘成奎. 冻融循环作用下黄土动态回弹模量研究. 地下空间与工程学报. 2023(02): 456-464+485 .
    8. 徐云山,肖子龙,孙德安,陈军浩,曾召田. 土体导热系数温度效应及其预测模型. 岩土工程学报. 2023(06): 1180-1189 . 本站查看
    9. 张超,刘江鑫,顾玉辉,薛冬,宋常军,李鹏. 无机结合料处治雄安地区开槽土的路用性能研究. 工业建筑. 2023(S1): 402-406+397 .
    10. 单龙,李宏波,程银银,康鑫睿,朱一丁. 水泥-镁渣固化盐渍土力学性能实验. 中国粉体技术. 2023(05): 8-16 .
    11. 齐添,赵川,刘飞禹,何江荟. 硫酸盐渍土–混凝土界面循环剪切特性研究. 岩石力学与工程学报. 2023(S2): 4280-4288 .
    12. 郭东悦,刘浩,杨庆港,李玉豪,莘子健. 固化细粒氯盐盐渍土工程特性研究. 施工技术(中英文). 2023(22): 20-25+31 .
    13. 宋济民,常立君. 再生微粉改性盐渍土的共振柱试验研究. 青海交通科技. 2022(06): 83-91 .

    Other cited types(18)

Catalog

    Article views (346) PDF downloads (133) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return