Citation: | LI Zhi, LIU Fushen, YANG Zhongxuan, ZHAN Wei. Thermo-mechanical behavior of energy piles based on coupled THM model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2129-2138. DOI: 10.11779/CJGE20220920 |
[1] |
LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763-781. doi: 10.1002/nag.499
|
[2] |
BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3): 237-248. doi: 10.1680/geot.2009.59.3.237
|
[3] |
桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. doi: 10.11779/CJGE201406014
GUI Shuqiang, CHENG Xiaohui. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. (in Chinese) doi: 10.11779/CJGE201406014
|
[4] |
路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334-342. doi: 10.11779/CJGE201702018
LU Hongwei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334-342. (in Chinese) doi: 10.11779/CJGE201702018
|
[5] |
STEWART M A, MCCARTNEY J S. Centrifuge modeling of soil-structure interaction in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013044. doi: 10.1061/(ASCE)GT.1943-5606.0001061
|
[6] |
GOODE Ⅲ J C, MCCARTNEY J S. Centrifuge modeling of end-restraint effects in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(8): 04015034. doi: 10.1061/(ASCE)GT.1943-5606.0001333
|
[7] |
NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of heating effects on energy pile performance in saturated sand[J]. Canadian Geotechnical Journal, 2015, 52(8): 1045-1057. doi: 10.1139/cgj-2014-0301
|
[8] |
黄旭, 孔纲强, 刘汉龙, 等. 循环温度场作用下PCC能量桩热力学特性模型试验研究[J]. 岩土力学, 2015, 36(3): 667-673. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503010.htm
HUANG Xu, KONG Gangqiang, LIU Hanlong, et al. Experimental research on thermomechanical characteristics of PCC energy pile under cyclic temperature field[J]. Rock and Soil Mechanics, 2015, 36(3): 667-673. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503010.htm
|
[9] |
孔纲强, 王成龙, 刘汉龙, 等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 958-964. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704006.htm
Kong Gangqiang, WANG Chenglong, Liu Hanlong, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38(4): 958-964. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704006.htm
|
[10] |
WANG W, REGUEIRO R A, STEWART M, et al. Coupled thermo-poro-mechanical finite element analysis of an energy foundation centrifuge experiment in saturated silt[M]// GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering. New York: Curran Associates Inc, 2012: 4406-4415.
|
[11] |
WANG W. Coupled Thermo-Poro-Mechanical Axisymmetric Finite Element Modeling of Soil-Structure Interaction in Partially Saturated Soils[D]. Boulder: University of Colorado at Boulder, 2014.
|
[12] |
LORIA A F R, GUNAWAN A, SHI C, et al. Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads[J]. Geomechanics for Energy and the Environment, 2015, 1: 1-15. doi: 10.1016/j.gete.2015.03.002
|
[13] |
LORIA A F R, DI DONNA A, LALOUI L. Numerical study on the suitability of centrifuge testing for capturing the thermal-induced mechanical behavior of energy piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(10): 04015042. doi: 10.1061/(ASCE)GT.1943-5606.0001318
|
[14] |
SAGGU R, CHAKRABORTY T. Cyclic thermo-mechanical analysis of energy piles in sand[J]. Geotechnical and Geological Engineering, 2015, 33(2): 321-342. doi: 10.1007/s10706-014-9798-8
|
[15] |
SAGGU R, CHAKRABORTY T. Thermomechanical analysis and parametric study of geothermal energy piles in sand[J]. International Journal of Geomechanics, 2017, 17(9): 04017076. doi: 10.1061/(ASCE)GM.1943-5622.0000962
|
[16] |
DI DONNA A, LORIA A F R, LALOUI L. Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads[J]. Computers and Geotechnics, 2016, 72: 126-142. doi: 10.1016/j.compgeo.2015.11.010
|
[17] |
RUI Y, SOGA K. Thermo-hydro-mechanical coupling analysis of a thermal pile[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2019, 172(2): 155-173. doi: 10.1680/jgeen.16.00133
|
[18] |
王成龙, 刘汉龙, 孔纲强, 等. 不同刚度约束对能量桩应力和位移的影响研究[J]. 岩土力学, 2018, 39(11): 4261-4268. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811043.htm
WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Study on stress and displacement of energy pile influenced by pile tip stiffness[J]. Rock and Soil Mechanics, 2018, 39(11): 4261-4268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811043.htm
|
[19] |
李翔宇, 郭红仙, 程晓辉. 能源桩温度分布的试验与数值研究[J]. 土木工程学报, 2016, 49(4): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604012.htm
LI Xiangyu, GUO Hongxian, CHENG Xiaohui. Experimental and numerical study on temperature distribution in energy piles[J]. China Civil Engineering Journal, 2016, 49(4): 102-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604012.htm
|
[20] |
COUSSY O. A general theory of thermoporoelastoplasticity for saturated porous materials[J]. Transport in porous media, 1989, 4(3): 281-293.
|
[21] |
BOOKER J R, SAVVIDOU C. Consolidation around a point heat source[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(2): 173-184.
|
[22] |
BAI M, ABOUSLEIMAN Y. Thermoporoelastic coupling with application to consolidation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(2): 121-132.
|
[23] |
COUSSY O. Poromechanics[M]. New York: John Wiley & Sons, 2004.
|
[24] |
OLIVELLA S, GENS A, CARRERA J, et al. Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media[J]. Engineering computations, 1996, 13(7): 87-112.
|
[25] |
DE BOER R. Trends in Continuum Mechanics of Porous Media[M]. Dordrecht: Springer, 2005.
|
[26] |
LEWIS R W, MAJORANA C E, SCHREFLER B A. A coupled finite element model for the consolidation of nonisothermal elastoplastic porous media[J]. Transport in porous media, 1986, 1(2): 155-178.
|
[27] |
ADINOLFI M, MAIORANO R M S, MAURO A, et al. On the influence of thermal cycles on the yearly performance of an energy pile[J]. Geomechanics for Energy and the Environment, 2018, 16: 32-44.
|
[28] |
COMSOL Inc. COMSOL Multiphysics User's Guide and Reference Manual, Version 5.6[M]. Burlington: COMSOL Inc., 2020.
|
[29] |
SALCIARINI D, RONCHI F, TAMAGNINI C. Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: a parametric study[J]. Acta Geotechnica, 2017, 12(4): 703-728.
|
[30] |
田婉琪, 程晓辉, 关文, 等. 考虑地基刚度分区的能源支护桩有限元模拟[J]. 防灾减灾工程学报, 2022, 42(5): 922-928. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202205006.htm
TIAN Wanqi, CHENG Xiaohui, GUAN Wen, et al. Finite element simulation of energy supporting piles considering stiffness zoning of foundation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(5): 922-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202205006.htm
|
[31] |
KNELLWOLF C, PERON H, LALOUI L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890-902.
|
[32] |
SUTMAN M, OLGUN C G, LALOUI L. Cyclic load–transfer approach for the analysis of energy piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(1): 04018101.
|
[33] |
LALOUI L, MORENI M, VULLIET L. Comportement d'un pieu bi-fonction, fondation et échangeur de chaleur[J]. Canadian Geotechnical Journal, 2003, 40(2): 388-402. (LALOUI L, MORENI M, VULLIET L. Behaviour of a bi-functional pile, foundation and heat exchanger[J]. Canadian Geotechnical Journal, 2003, 40(2): 388-402. (in French))
|
[34] |
RANDOLPH M F, WROTH C P. Application of the failure state in undrained simple shear to the shaft capacity of driven piles[J]. Géotechnique, 1981, 31(1): 143-157.
|
[35] |
KRAFT Jr L M. Computing axial pile capacity in sands for offshore conditions[J]. Marine Georesources & Geotechnology, 1990, 9(1): 61-92.
|
1. |
吕晶,赵欢,张金翼,席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能. 材料导报. 2024(07): 97-103 .
![]() | |
2. |
李治斌,刘利骄,黄帅,丁琳,柳艳杰. 冻结二灰固化碳酸盐渍土及损伤模型研究. 长江科学院院报. 2024(07): 118-125 .
![]() | |
3. |
李博,石振武,刘俊辰,张洪瑞. 复合改良黄土状亚砂土强度特性及微观机制. 硅酸盐通报. 2023(01): 373-382 .
![]() | |
4. |
田野. 以顶面回弹模量为目标的铁路货场地基换填方法研究. 长沙理工大学学报(自然科学版). 2023(01): 58-64 .
![]() | |
5. |
李治斌,苏安双,张晓东,刘利骄,刘春龙,丁琳,徐凡林,李震威. 冻融循环作用下东北盐渍土地区路基填料改良试验研究. 森林工程. 2023(02): 139-147 .
![]() | |
6. |
马晓武,马云峰,刘安龙,唐磊,殷珂,蓟文豪. 水泥及压实度对重塑黄土强度影响的试验研究. 公路. 2023(03): 309-315 .
![]() | |
7. |
唐鑫,张吾渝,何蓓,董超凡,刘成奎. 冻融循环作用下黄土动态回弹模量研究. 地下空间与工程学报. 2023(02): 456-464+485 .
![]() | |
8. |
徐云山,肖子龙,孙德安,陈军浩,曾召田. 土体导热系数温度效应及其预测模型. 岩土工程学报. 2023(06): 1180-1189 .
![]() | |
9. |
张超,刘江鑫,顾玉辉,薛冬,宋常军,李鹏. 无机结合料处治雄安地区开槽土的路用性能研究. 工业建筑. 2023(S1): 402-406+397 .
![]() | |
10. |
单龙,李宏波,程银银,康鑫睿,朱一丁. 水泥-镁渣固化盐渍土力学性能实验. 中国粉体技术. 2023(05): 8-16 .
![]() | |
11. |
齐添,赵川,刘飞禹,何江荟. 硫酸盐渍土–混凝土界面循环剪切特性研究. 岩石力学与工程学报. 2023(S2): 4280-4288 .
![]() | |
12. |
郭东悦,刘浩,杨庆港,李玉豪,莘子健. 固化细粒氯盐盐渍土工程特性研究. 施工技术(中英文). 2023(22): 20-25+31 .
![]() | |
13. |
宋济民,常立君. 再生微粉改性盐渍土的共振柱试验研究. 青海交通科技. 2022(06): 83-91 .
![]() |