• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WENG Xiao-lin, HU Ji-bo, JIA Yang, ZHOU Shang-qi. Deformation characteristics of saturated remolded loess under cyclic traffic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1617-1625. DOI: 10.11779/CJGE202209006
Citation: WENG Xiao-lin, HU Ji-bo, JIA Yang, ZHOU Shang-qi. Deformation characteristics of saturated remolded loess under cyclic traffic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1617-1625. DOI: 10.11779/CJGE202209006

Deformation characteristics of saturated remolded loess under cyclic traffic loads

More Information
  • Received Date: December 24, 2020
  • Available Online: September 22, 2022
  • To study the deformation laws of saturated remolded loess under the rotation of principal stress axis, the cyclic triaxial tests and cyclic traffic load tests on the saturated remolded loess under drainage are carried out by using the hollow cylinder torsional shear apparatus, and the effects of the rotation of the principal stress axis on the vertical plastic cumulative strain, radial plastic cumulative strain and octahedral plastic cumulative shear strain of the saturated remolded loess are mainly studied. The experimental results show that: (1) The rotation of the principal stress axis will cause the plastic cumulative deformation of soil. The vertical plastic cumulative deformation and octahedral plastic cumulative shear strain of soil exhibit a logarithmic growth trend with the increase of the cyclic times, and the cyclic vertical stress ratio and cyclic torsional shear stress ratio are positively correlated with them. At the initial stage of the plastic cumulative strain, it is mainly in the form of tensile strain. With the increase of load times, its value gradually decreases and accumulates in the opposite direction. (2) The rotation of the principal stress axis will accelerate the corresponding vertical plastic accumulated strain. When other conditions are certain, the deformation of the samples under cyclic traffic loads is several times that of cyclic triaxial tests. (3) The vertical deformation of the remolded loess under traffic loads is far less than that of undisturbed soft clay, which has certain advantages as the subgrade filling materials. (4) The existing vertical plastic cumulative strain model is modified, and an explicit prediction model for the settlement deformation of saturated remolded loess is obtained, and the validity of the model is analyzed and verified.
  • [1]
    LI J, SHAO S J, SHAO S. Collapsible characteristics of loess tunnel site and their effects on tunnel structure[J]. Tunnelling and Underground Space Technology, 2019, 83: 509–519. doi: 10.1016/j.tust.2018.08.035
    [2]
    WENG X L, SUN Y F, ZHANG Y W, et al. Physical modeling of wetting-induced collapse of shield tunneling in loess strata[J]. Tunnelling and Underground Space Technology, 2019, 90: 208–219. doi: 10.1016/j.tust.2019.05.004
    [3]
    王星博, 于洪钦, 王财平, 等. 西部寒区高速铁路路基沉降整治措施研究[J]. 路基工程, 2017(5): 53–58. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201705012.htm

    WANG Xing-bo, YU Hong-qin, WANG Cai-ping, et al. Study on control measures for subgrade settlement of high-speed railway in cold regions of Western China[J]. Subgrade Engineering, 2017(5): 53–58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201705012.htm
    [4]
    谷天峰. 郑西客运专线黄土地基振(震)陷研究[D]. 西安: 西北大学, 2007.

    GU Tian-feng. Study on Loess Seismic Subsidence and Dynamic Settlement of Roadbed of Zhengzhou-Xi'an Passenger Express Railway[D]. Xi'an: Northwest University, 2007. (in Chinese)
    [5]
    ZDRAVKOVIĆ L, POTTS D M, HIGHT D W. The effect of strength anisotropy on the behaviour of embankments on soft ground[J]. Géotechnique, 2002, 52(6): 447–457. doi: 10.1680/geot.2002.52.6.447
    [6]
    SIVATHAYALAN S, VAID Y P. Influence of generalized initial state and principal stress rotation on the undrained response of sands[J]. Canadian Geotechnical Journal, 2002, 39(1): 63–76. doi: 10.1139/t01-078
    [7]
    TOWHATA I, ISHIHARA K. Undrained strength of sand undergoing cyclic rotation of principal stress axes[J]. Soils and Foundations, 1985, 25(2): 135–147. doi: 10.3208/sandf1972.25.2_135
    [8]
    VAID Y P, A S Y, HOU E H, et al. Generalized stress-path-dependent soil behaviour with a new hollow cylinder torsional apparatus[J]. Canadian Geotechnical Journal, 1990, 27(5): 601–616. doi: 10.1139/t90-075
    [9]
    熊焕, 郭林, 蔡袁强. 交通荷载应力路径下砂土地基变形特性研究[J]. 岩土工程学报, 2016, 38(4): 662–669. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604012.htm

    XIONG Huan, GUO Lin, CAI Yuan-qiang. Deformation behaviors of sandy subgrade soil under traffic load-induced stress path[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 662–669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604012.htm
    [10]
    钱建固, 杜子博. 纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性[J]. 岩土工程学报, 2016, 38(8): 1381–1390. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608004.htm

    QIAN Jian-gu, DU Zi-bo. Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1381–1390. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608004.htm
    [11]
    沈扬, 周建, 张金良, 等. 考虑主应力方向变化的原状黏土强度及超静孔压特性研究[J]. 岩土工程学报, 2007, 29(6): 843–847. doi: 10.3321/j.issn:1000-4548.2007.06.009

    SHEN Yang, ZHOU Jian, ZHANG Jin-liang, et al. Research on strength and pore pressure of intact clay considering variation of principal stress direction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 843–847. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.009
    [12]
    王钰轲, 万永帅, 方宏远, 等. 圆形应力路径下软黏土的动力特性试验研究[J]. 岩土力学, 2020, 41(5): 1643–1652. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005023.htm

    WANG Yu-ke, WAN Yong-shuai, FANG Hong-yuan, et al. Experimental study of cyclic behavior of soft clay under circle stress paths[J]. Rock and Soil Mechanics, 2020, 41(5): 1643–1652. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005023.htm
    [13]
    刘家顺, 张向东, 孙嘉宝, 等. 主应力轴旋转下K0固结饱和粉质黏土孔压及变形特性试验研究[J]. 岩土力学, 2018, 39(8): 2787–2794, 2804. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808010.htm

    LIU Jia-shun, ZHANG Xiang-dong, SUN Jia-bao, et al. Experimental study on the pore pressure and deformation of saturated silty clay under K0 consolidation and principal stress axis rotation[J]. Rock and Soil Mechanics, 2018, 39(8): 2787–2794, 2804. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808010.htm
    [14]
    扈萍, 魏超, 杨令强, 等. 主应力轴往复循环旋转下砂土的变形特性研究[J]. 地下空间与工程学报, 2018, 14(4): 955–961. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201804011.htm

    HU Ping, WEI Chao, YANG Ling-qiang, et al. Deformation behavior of sands under reciprocating cyclic principal stress rotation[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(4): 955–961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201804011.htm
    [15]
    PRASANNA R, SINTHUJAN N, SIVATHAYALAN S. Effects of initial direction and subsequent rotation of principal stresses on liquefaction potential of loose sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(3): 04019130. doi: 10.1061/(ASCE)GT.1943-5606.0002182
    [16]
    YANG Z X, LI X S, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371–384. doi: 10.1680/geot.2007.57.4.371
    [17]
    贾阳. 循环交通荷载下饱和重塑黄土应变及动力特性研究[D]. 西安: 长安大学, 2019.

    JIA Yang. Study on Strain and Dynamic Characteristics of Saturated Remoulded Loess under Cyclic Traffic Load[D]. Xi'an: Changan University, 2019. (in Chinese)
    [18]
    谌文武, 刘伟, 王娟, 等. 黄土饱和度与B值关系试验研究[J]. 岩土力学, 2019, 40(3): 834–842. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903002.htm

    CHEN Wen-wu, LIU Wei, WANG Juan, et al. Relationship between saturation degree and B value for loess[J]. Rock and Soil Mechanics, 2019, 40(3): 834–842. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903002.htm
    [19]
    ASTM. Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil[S]. 2013.
    [20]
    HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355–383. doi: 10.1680/geot.1983.33.4.355
    [21]
    CAI Y Q, GU C, WANG J, et al. One-way cyclic triaxial behavior of saturated clay: comparison between constant and variable confining pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 797–809. doi: 10.1061/(ASCE)GT.1943-5606.0000760
    [22]
    郭林. 复杂应力路径下饱和软黏土静动力特性试验研究[D]. 杭州: 浙江大学, 2013.

    GUO Lin. Experimental Study on the Static and Cyclic Behavior of Saturated Soft Clay under Complex Stress Path[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
    [23]
    MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subgrade soils due to repeated loading[J]. Transportation Research Record, 1975(537): 1–17. http://www.researchgate.net/publication/279902408_PERMANENT_DEFORMATION_CHARACTERISTICS_OF_SUBGRADE_SOILS_DUE_TO_REPEATED_LOADING

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return