Citation: | WENG Xiao-lin, HU Ji-bo, JIA Yang, ZHOU Shang-qi. Deformation characteristics of saturated remolded loess under cyclic traffic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1617-1625. DOI: 10.11779/CJGE202209006 |
[1] |
LI J, SHAO S J, SHAO S. Collapsible characteristics of loess tunnel site and their effects on tunnel structure[J]. Tunnelling and Underground Space Technology, 2019, 83: 509–519. doi: 10.1016/j.tust.2018.08.035
|
[2] |
WENG X L, SUN Y F, ZHANG Y W, et al. Physical modeling of wetting-induced collapse of shield tunneling in loess strata[J]. Tunnelling and Underground Space Technology, 2019, 90: 208–219. doi: 10.1016/j.tust.2019.05.004
|
[3] |
王星博, 于洪钦, 王财平, 等. 西部寒区高速铁路路基沉降整治措施研究[J]. 路基工程, 2017(5): 53–58. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201705012.htm
WANG Xing-bo, YU Hong-qin, WANG Cai-ping, et al. Study on control measures for subgrade settlement of high-speed railway in cold regions of Western China[J]. Subgrade Engineering, 2017(5): 53–58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201705012.htm
|
[4] |
谷天峰. 郑西客运专线黄土地基振(震)陷研究[D]. 西安: 西北大学, 2007.
GU Tian-feng. Study on Loess Seismic Subsidence and Dynamic Settlement of Roadbed of Zhengzhou-Xi'an Passenger Express Railway[D]. Xi'an: Northwest University, 2007. (in Chinese)
|
[5] |
ZDRAVKOVIĆ L, POTTS D M, HIGHT D W. The effect of strength anisotropy on the behaviour of embankments on soft ground[J]. Géotechnique, 2002, 52(6): 447–457. doi: 10.1680/geot.2002.52.6.447
|
[6] |
SIVATHAYALAN S, VAID Y P. Influence of generalized initial state and principal stress rotation on the undrained response of sands[J]. Canadian Geotechnical Journal, 2002, 39(1): 63–76. doi: 10.1139/t01-078
|
[7] |
TOWHATA I, ISHIHARA K. Undrained strength of sand undergoing cyclic rotation of principal stress axes[J]. Soils and Foundations, 1985, 25(2): 135–147. doi: 10.3208/sandf1972.25.2_135
|
[8] |
VAID Y P, A S Y, HOU E H, et al. Generalized stress-path-dependent soil behaviour with a new hollow cylinder torsional apparatus[J]. Canadian Geotechnical Journal, 1990, 27(5): 601–616. doi: 10.1139/t90-075
|
[9] |
熊焕, 郭林, 蔡袁强. 交通荷载应力路径下砂土地基变形特性研究[J]. 岩土工程学报, 2016, 38(4): 662–669. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604012.htm
XIONG Huan, GUO Lin, CAI Yuan-qiang. Deformation behaviors of sandy subgrade soil under traffic load-induced stress path[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 662–669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604012.htm
|
[10] |
钱建固, 杜子博. 纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性[J]. 岩土工程学报, 2016, 38(8): 1381–1390. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608004.htm
QIAN Jian-gu, DU Zi-bo. Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1381–1390. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608004.htm
|
[11] |
沈扬, 周建, 张金良, 等. 考虑主应力方向变化的原状黏土强度及超静孔压特性研究[J]. 岩土工程学报, 2007, 29(6): 843–847. doi: 10.3321/j.issn:1000-4548.2007.06.009
SHEN Yang, ZHOU Jian, ZHANG Jin-liang, et al. Research on strength and pore pressure of intact clay considering variation of principal stress direction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 843–847. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.009
|
[12] |
王钰轲, 万永帅, 方宏远, 等. 圆形应力路径下软黏土的动力特性试验研究[J]. 岩土力学, 2020, 41(5): 1643–1652. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005023.htm
WANG Yu-ke, WAN Yong-shuai, FANG Hong-yuan, et al. Experimental study of cyclic behavior of soft clay under circle stress paths[J]. Rock and Soil Mechanics, 2020, 41(5): 1643–1652. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005023.htm
|
[13] |
刘家顺, 张向东, 孙嘉宝, 等. 主应力轴旋转下K0固结饱和粉质黏土孔压及变形特性试验研究[J]. 岩土力学, 2018, 39(8): 2787–2794, 2804. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808010.htm
LIU Jia-shun, ZHANG Xiang-dong, SUN Jia-bao, et al. Experimental study on the pore pressure and deformation of saturated silty clay under K0 consolidation and principal stress axis rotation[J]. Rock and Soil Mechanics, 2018, 39(8): 2787–2794, 2804. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808010.htm
|
[14] |
扈萍, 魏超, 杨令强, 等. 主应力轴往复循环旋转下砂土的变形特性研究[J]. 地下空间与工程学报, 2018, 14(4): 955–961. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201804011.htm
HU Ping, WEI Chao, YANG Ling-qiang, et al. Deformation behavior of sands under reciprocating cyclic principal stress rotation[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(4): 955–961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201804011.htm
|
[15] |
PRASANNA R, SINTHUJAN N, SIVATHAYALAN S. Effects of initial direction and subsequent rotation of principal stresses on liquefaction potential of loose sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(3): 04019130. doi: 10.1061/(ASCE)GT.1943-5606.0002182
|
[16] |
YANG Z X, LI X S, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371–384. doi: 10.1680/geot.2007.57.4.371
|
[17] |
贾阳. 循环交通荷载下饱和重塑黄土应变及动力特性研究[D]. 西安: 长安大学, 2019.
JIA Yang. Study on Strain and Dynamic Characteristics of Saturated Remoulded Loess under Cyclic Traffic Load[D]. Xi'an: Changan University, 2019. (in Chinese)
|
[18] |
谌文武, 刘伟, 王娟, 等. 黄土饱和度与B值关系试验研究[J]. 岩土力学, 2019, 40(3): 834–842. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903002.htm
CHEN Wen-wu, LIU Wei, WANG Juan, et al. Relationship between saturation degree and B value for loess[J]. Rock and Soil Mechanics, 2019, 40(3): 834–842. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903002.htm
|
[19] |
ASTM. Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil[S]. 2013.
|
[20] |
HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355–383. doi: 10.1680/geot.1983.33.4.355
|
[21] |
CAI Y Q, GU C, WANG J, et al. One-way cyclic triaxial behavior of saturated clay: comparison between constant and variable confining pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 797–809. doi: 10.1061/(ASCE)GT.1943-5606.0000760
|
[22] |
郭林. 复杂应力路径下饱和软黏土静动力特性试验研究[D]. 杭州: 浙江大学, 2013.
GUO Lin. Experimental Study on the Static and Cyclic Behavior of Saturated Soft Clay under Complex Stress Path[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
|
[23] |
MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subgrade soils due to repeated loading[J]. Transportation Research Record, 1975(537): 1–17. http://www.researchgate.net/publication/279902408_PERMANENT_DEFORMATION_CHARACTERISTICS_OF_SUBGRADE_SOILS_DUE_TO_REPEATED_LOADING
|