Citation: | ZHAI Qian, TIAN Gang, ZHU Yiyao, DAI Guoliang, ZHAO Xueliang, GONG Weimin, DU Yanjun. Physical-statistical model for estimation of hysteresis of soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2072-2080. DOI: 10.11779/CJGE20220865 |
[1] |
ZHAI Q, RAHARDJO H. Estimation of permeability function from the soil-water characteristic curve[J]. Engineering Geology, 2015, 199: 148-56. doi: 10.1016/j.enggeo.2015.11.001
|
[2] |
ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of unsaturated shear strength from soil-water characteristic curve[J]. Acta Geotechnica, 2019, 14(6): 1977-90. doi: 10.1007/s11440-019-00785-y
|
[3] |
KIM J, HWANG W, KIM Y. Effects of hysteresis on hydro-mechanical behavior of unsaturated soil[J]. Engineering Geology, 2018, 245: 1-9. doi: 10.1016/j.enggeo.2018.08.004
|
[4] |
CHUNG C C, LIN C P, YANG S H, et al. Investigation of non-unique relationship between soil electrical conductivity and water content due to drying-wetting rate using TDR[J]. Engineering Geology, 2019, 252: 54-64. doi: 10.1016/j.enggeo.2019.02.025
|
[5] |
GOH S G. Hysteresis Effects on Mechanical Behaviour of Unsaturated Soils[D]. Singapore: Nanyang Technological University, 2012.
|
[6] |
ENDERBY J A. The domain model of hysteresis: Part 2 interacting domains[J]. Transactions of the Faraday Society, 1956, 52(0): 106-120. doi: 10.1039/TF9565200106
|
[7] |
NéEL L. Théorie des lois d'aimantation de lord rayleigh et les déplacements d'une paroi isolée[J]. Cahiers de physique, 1942, 12: 1-20. (NéEL L. Theory of Lord Rayleigh's magnetization laws and the displacements of an isolated wall[J]. Physics Notebooks, 1942, 12: 1-20. (in French))
|
[8] |
NéEL L. Théorie des lois d'aimantation de Lord Rayleigh: Ⅱ Multiples domaines et Champ coercitif[J]. Cahiers De Physique, 1943, 13: 18-30. (NéEL L. Lord Rayleigh's theory of magnetization laws: Ⅱ multiple domains and coercive field[J]. Physics Notebooks, 1943, 13: 18-30. (in French))
|
[9] |
POULOVASSILIS A. Hysteresis of pore water, an application of the concept of independent domains [J]. Soil Science, 1962, 93(6): 405-12. doi: 10.1097/00010694-196206000-00007
|
[10] |
POULOVASSILIS A. Hysteresis of pore water in granular porous bodies [J]. Soil Science, 1970, 109(1): 5-12. doi: 10.1097/00010694-197001000-00002
|
[11] |
POULOVASSILIS A. The effect of the entrapped air on the hysteresis curves of a porous body and on its hydraulic conductivity [J]. Soil Science, 1970, 109(3): 154-62. doi: 10.1097/00010694-197003000-00003
|
[12] |
HANKS R, KLUTE A. A numerical method for estimating, infiltration, redistribution, drainage and evaporation of water from soil[J] Water Resource Research, 1969, 5(5): 1064-1069. doi: 10.1029/WR005i005p01064
|
[13] |
POULOVASSILIS A, CHILDS E. The hysteresis of pore water: the non-independence of domains[J]. Soil Science, 1971, 112(5): 301-12. doi: 10.1097/00010694-197111000-00002
|
[14] |
GILLHAM R, KLUTE A, HEERMANN D. Hydraulic properties of a porous medium: measurement and empirical representation[J]. Soil Science Society of America Journal, 1976, 40(2): 203-7. doi: 10.2136/sssaj1976.03615995004000020008x
|
[15] |
POULOVASSILIS A, EL-GHAMRY W. The dependent domain theory applied to scanning curves of any order in hysteretic soil water relationships[J]. Soil Science, 1978, 126(1): 1-8. doi: 10.1097/00010694-197807000-00001
|
[16] |
JAYNES D. Comparison of soil-water hysteresis models[J]. Journal of Hydrology, 1984, 75(1/2/3/4): 287-99.
|
[17] |
HOGARTH W, HOPMANS J, PARLANGE J-Y, et al. Application of a simple soil-water hysteresis model[J]. Journal of Hydrology, 1988, 98(1/2): 21-9.
|
[18] |
VIAENE P, VEREECKEN H, DIELS J, et al. A statistical analysis of six hysteresis models for the moisture retention characteristic[J]. Soil Science, 1994, 157(6): 345-55. doi: 10.1097/00010694-199406000-00003
|
[19] |
BRADDOCK R, PARLANGE J-Y, LEE H. Application of a soil water hysteresis model to simple water retention curves [J]. Transport in Porous Media, 2001, 44(3): 407-20. doi: 10.1023/A:1010792008870
|
[20] |
KARUBE D, KAWAI K. The role of pore water in the mechanical behavior of unsaturated soils[J]. Geotechnical and Geological Engineering, 2001, 19(3/4): 211-241. doi: 10.1023/A:1013188200053
|
[21] |
PHAM H, FREDLUND D, BARBOUR S L. A practical hysteresis model for the soil-water characteristic curve for soils with negligible volume change[J]. Géotechnique, 2003, 53(2): 293-8. doi: 10.1680/geot.2003.53.2.293
|
[22] |
ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of the wetting scanning curves for sandy soils[J]. Engineering Geology, 2020, 272: 105635. doi: 10.1016/j.enggeo.2020.105635
|
[23] |
PHAM H Q, FREDLUND D G, BARBOUR S L. A study of hysteresis models for soil-water characteristic curves[J]. Canadian Geotechnical Journal, 2005, 42(6): 1548-68. doi: 10.1139/t05-071
|
[24] |
BEAR J. Hydraulics of Groundwater[M]. New York: McGraw-Hill Book, 1979.
|
[25] |
KLAUSNER Y. Fundamentals of Continuum Mechanics of Soils[M]. Springer Science & Business Media, 2012.
|
[26] |
KLUTE A. Water retention: laboratory methods[J]. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 1986, 5: 635-62.
|
[27] |
CHILDS E. The use of soil moisture characteristics in soil studies[J]. Soil Science, 1940, 50(4): 239-52. doi: 10.1097/00010694-194010000-00001
|
[28] |
CHILDS E, GEORGE N C. Soil geometry and soil-water equilibria[J]. Discussions of the Faraday Society, 1948, 3: 78-85. doi: 10.1039/df9480300078
|
[29] |
CHILDS E C, COLLIS-GEORGE N. The permeability of porous materials[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 201(1066): 392-405.
|
[30] |
ZHAI Q, H. R, SATYANAGA A, et al. Role of the pore-size distribution function on water flow in unsaturated soil[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2019, 20(1): 10-20.
|
[31] |
FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-32. doi: 10.1139/t94-061
|
[32] |
BACHMANN J, PLOEG R. A review on recent developments in soil water retention theory: interfacial tension and temperature effects[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 468-478. doi: 10.1002/1522-2624(200208)165:4<468::AID-JPLN468>3.0.CO;2-G
|
[33] |
ERAL H B, 't MANNETJE D J C M, OH J M. Contact angle hysteresis: a review of fundamentals and applications[J]. Colloid Polym Sci, 2013, 291: 247-260. doi: 10.1007/s00396-012-2796-6
|
[34] |
TAYLOR D W. Fundamentals of Soil Mechanics[M]. New York: J Wiley, 1948.
|
[35] |
伏映鹏, 廖红建, 吕龙龙, 等. 考虑接触角及粒径级配影响的土水特征曲线滞回模型[J]. 岩土工程学报, 2022, 44(3): 502-513. doi: 10.11779/CJGE202203012
FU Yingpeng, LIAO Hongjian, LÜ Longlong, et al. Hysteretic model for fitting soil-water characteristic curves considering contact angle and grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3)502-513 (in Chinese doi: 10.11779/CJGE202203012
|
[36] |
郑方, 刘奉银, 王磊. 粒度对非饱和土土水特征曲线滞回特性的影响[J]. 水利与建筑工程学报, 2019, 17(5): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201905003.htm
ZHENG Fang, LIU Fengyin, WANG Lei. Influence of unsaturated soil granularity on hysteretic behavior of soil-water characteristic curve[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5): 19-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201905003.htm
|
[37] |
LAI C H. Experimental Study of Stress-Dependent Soil-Water Characteristics and Their Applications on Numerical Analysis of Slope Stability[D]. Hong Kong: Hong Kong University of Science and Technology, 2004.
|
[38] |
赵文博, 徐洁, 程青, 等. 竖向应力及干湿循环对黄土土-水特征曲线的影响[J]. 科学技术与工程, 2015, 15(36): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201536035.htm
ZHAO Wenbo, XU Jie, CHENG Qing, et al. Influences of vertical stress and drying-wetting cycles on soil-water characteristic curve of loess[J]. Science Technology and Engineering, 2015, 15(36): 189-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201536035.htm
|
[39] |
何芳婵, 张俊然. 原状膨胀土干湿过程中持水特性及孔隙结构分析[J]. 应用基础与工程科学学报, 2022, 30(3): 736-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202203017.htm
HE Fangchan, ZHANG Junran. Water retention behavior and pore structure analysis of undisturbed expansive soil during drying and wetting[J]. Journal of Basic Science and Engineering, 2022, 30(3): 736-747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202203017.htm
|