• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAI Qian, TIAN Gang, ZHU Yiyao, DAI Guoliang, ZHAO Xueliang, GONG Weimin, DU Yanjun. Physical-statistical model for estimation of hysteresis of soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2072-2080. DOI: 10.11779/CJGE20220865
Citation: ZHAI Qian, TIAN Gang, ZHU Yiyao, DAI Guoliang, ZHAO Xueliang, GONG Weimin, DU Yanjun. Physical-statistical model for estimation of hysteresis of soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2072-2080. DOI: 10.11779/CJGE20220865

Physical-statistical model for estimation of hysteresis of soil-water characteristic curve

More Information
  • Received Date: July 11, 2022
  • Available Online: March 09, 2023
  • The hysteresis phenomenon is commonly observed associated with both the soil-water characteristic curve (SWCC) and the hydraulic conductivity function (HCF) of unsaturated soils. In other words, the volumetric water content and the hydraulic conductivity in the wetting process are commonly different than those in the drying processs. There are various empirical models avaiable for the estimation of the hysteresis of SWCC, and the estimated results by those empirical models are much dependent on the model parameters, which have weak physical meanings. A matrix is adopted for the simulation of the improved capillary model, and the water amount in the tubes with different radii is calculated using the statistical method. The water contents corresponding to different suction levels in the drying and wetting processes are obtained by summation of the water amount in the tubes with different radii. In the wetting process, the effects of the factors (such as the entrapped air, ink-bottle effect and the "rain-drop" effect) on the hysteresis of SWCC are quantified. The SWCC data collected from the literatures published both at home and abroad are adopted for the verification. It is observed that the predicted results by the proposed model have good agreement with the experimental data from the literatures.
  • [1]
    ZHAI Q, RAHARDJO H. Estimation of permeability function from the soil-water characteristic curve[J]. Engineering Geology, 2015, 199: 148-56. doi: 10.1016/j.enggeo.2015.11.001
    [2]
    ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of unsaturated shear strength from soil-water characteristic curve[J]. Acta Geotechnica, 2019, 14(6): 1977-90. doi: 10.1007/s11440-019-00785-y
    [3]
    KIM J, HWANG W, KIM Y. Effects of hysteresis on hydro-mechanical behavior of unsaturated soil[J]. Engineering Geology, 2018, 245: 1-9. doi: 10.1016/j.enggeo.2018.08.004
    [4]
    CHUNG C C, LIN C P, YANG S H, et al. Investigation of non-unique relationship between soil electrical conductivity and water content due to drying-wetting rate using TDR[J]. Engineering Geology, 2019, 252: 54-64. doi: 10.1016/j.enggeo.2019.02.025
    [5]
    GOH S G. Hysteresis Effects on Mechanical Behaviour of Unsaturated Soils[D]. Singapore: Nanyang Technological University, 2012.
    [6]
    ENDERBY J A. The domain model of hysteresis: Part 2 interacting domains[J]. Transactions of the Faraday Society, 1956, 52(0): 106-120. doi: 10.1039/TF9565200106
    [7]
    NéEL L. Théorie des lois d'aimantation de lord rayleigh et les déplacements d'une paroi isolée[J]. Cahiers de physique, 1942, 12: 1-20. (NéEL L. Theory of Lord Rayleigh's magnetization laws and the displacements of an isolated wall[J]. Physics Notebooks, 1942, 12: 1-20. (in French))
    [8]
    NéEL L. Théorie des lois d'aimantation de Lord Rayleigh: Ⅱ Multiples domaines et Champ coercitif[J]. Cahiers De Physique, 1943, 13: 18-30. (NéEL L. Lord Rayleigh's theory of magnetization laws: Ⅱ multiple domains and coercive field[J]. Physics Notebooks, 1943, 13: 18-30. (in French))
    [9]
    POULOVASSILIS A. Hysteresis of pore water, an application of the concept of independent domains [J]. Soil Science, 1962, 93(6): 405-12. doi: 10.1097/00010694-196206000-00007
    [10]
    POULOVASSILIS A. Hysteresis of pore water in granular porous bodies [J]. Soil Science, 1970, 109(1): 5-12. doi: 10.1097/00010694-197001000-00002
    [11]
    POULOVASSILIS A. The effect of the entrapped air on the hysteresis curves of a porous body and on its hydraulic conductivity [J]. Soil Science, 1970, 109(3): 154-62. doi: 10.1097/00010694-197003000-00003
    [12]
    HANKS R, KLUTE A. A numerical method for estimating, infiltration, redistribution, drainage and evaporation of water from soil[J] Water Resource Research, 1969, 5(5): 1064-1069. doi: 10.1029/WR005i005p01064
    [13]
    POULOVASSILIS A, CHILDS E. The hysteresis of pore water: the non-independence of domains[J]. Soil Science, 1971, 112(5): 301-12. doi: 10.1097/00010694-197111000-00002
    [14]
    GILLHAM R, KLUTE A, HEERMANN D. Hydraulic properties of a porous medium: measurement and empirical representation[J]. Soil Science Society of America Journal, 1976, 40(2): 203-7. doi: 10.2136/sssaj1976.03615995004000020008x
    [15]
    POULOVASSILIS A, EL-GHAMRY W. The dependent domain theory applied to scanning curves of any order in hysteretic soil water relationships[J]. Soil Science, 1978, 126(1): 1-8. doi: 10.1097/00010694-197807000-00001
    [16]
    JAYNES D. Comparison of soil-water hysteresis models[J]. Journal of Hydrology, 1984, 75(1/2/3/4): 287-99.
    [17]
    HOGARTH W, HOPMANS J, PARLANGE J-Y, et al. Application of a simple soil-water hysteresis model[J]. Journal of Hydrology, 1988, 98(1/2): 21-9.
    [18]
    VIAENE P, VEREECKEN H, DIELS J, et al. A statistical analysis of six hysteresis models for the moisture retention characteristic[J]. Soil Science, 1994, 157(6): 345-55. doi: 10.1097/00010694-199406000-00003
    [19]
    BRADDOCK R, PARLANGE J-Y, LEE H. Application of a soil water hysteresis model to simple water retention curves [J]. Transport in Porous Media, 2001, 44(3): 407-20. doi: 10.1023/A:1010792008870
    [20]
    KARUBE D, KAWAI K. The role of pore water in the mechanical behavior of unsaturated soils[J]. Geotechnical and Geological Engineering, 2001, 19(3/4): 211-241. doi: 10.1023/A:1013188200053
    [21]
    PHAM H, FREDLUND D, BARBOUR S L. A practical hysteresis model for the soil-water characteristic curve for soils with negligible volume change[J]. Géotechnique, 2003, 53(2): 293-8. doi: 10.1680/geot.2003.53.2.293
    [22]
    ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of the wetting scanning curves for sandy soils[J]. Engineering Geology, 2020, 272: 105635. doi: 10.1016/j.enggeo.2020.105635
    [23]
    PHAM H Q, FREDLUND D G, BARBOUR S L. A study of hysteresis models for soil-water characteristic curves[J]. Canadian Geotechnical Journal, 2005, 42(6): 1548-68. doi: 10.1139/t05-071
    [24]
    BEAR J. Hydraulics of Groundwater[M]. New York: McGraw-Hill Book, 1979.
    [25]
    KLAUSNER Y. Fundamentals of Continuum Mechanics of Soils[M]. Springer Science & Business Media, 2012.
    [26]
    KLUTE A. Water retention: laboratory methods[J]. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 1986, 5: 635-62.
    [27]
    CHILDS E. The use of soil moisture characteristics in soil studies[J]. Soil Science, 1940, 50(4): 239-52. doi: 10.1097/00010694-194010000-00001
    [28]
    CHILDS E, GEORGE N C. Soil geometry and soil-water equilibria[J]. Discussions of the Faraday Society, 1948, 3: 78-85. doi: 10.1039/df9480300078
    [29]
    CHILDS E C, COLLIS-GEORGE N. The permeability of porous materials[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 201(1066): 392-405.
    [30]
    ZHAI Q, H. R, SATYANAGA A, et al. Role of the pore-size distribution function on water flow in unsaturated soil[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2019, 20(1): 10-20.
    [31]
    FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-32. doi: 10.1139/t94-061
    [32]
    BACHMANN J, PLOEG R. A review on recent developments in soil water retention theory: interfacial tension and temperature effects[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 468-478. doi: 10.1002/1522-2624(200208)165:4<468::AID-JPLN468>3.0.CO;2-G
    [33]
    ERAL H B, 't MANNETJE D J C M, OH J M. Contact angle hysteresis: a review of fundamentals and applications[J]. Colloid Polym Sci, 2013, 291: 247-260. doi: 10.1007/s00396-012-2796-6
    [34]
    TAYLOR D W. Fundamentals of Soil Mechanics[M]. New York: J Wiley, 1948.
    [35]
    伏映鹏, 廖红建, 吕龙龙, 等. 考虑接触角及粒径级配影响的土水特征曲线滞回模型[J]. 岩土工程学报, 2022, 44(3): 502-513. doi: 10.11779/CJGE202203012

    FU Yingpeng, LIAO Hongjian, LÜ Longlong, et al. Hysteretic model for fitting soil-water characteristic curves considering contact angle and grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3)502-513 (in Chinese doi: 10.11779/CJGE202203012
    [36]
    郑方, 刘奉银, 王磊. 粒度对非饱和土土水特征曲线滞回特性的影响[J]. 水利与建筑工程学报, 2019, 17(5): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201905003.htm

    ZHENG Fang, LIU Fengyin, WANG Lei. Influence of unsaturated soil granularity on hysteretic behavior of soil-water characteristic curve[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5): 19-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS201905003.htm
    [37]
    LAI C H. Experimental Study of Stress-Dependent Soil-Water Characteristics and Their Applications on Numerical Analysis of Slope Stability[D]. Hong Kong: Hong Kong University of Science and Technology, 2004.
    [38]
    赵文博, 徐洁, 程青, 等. 竖向应力及干湿循环对黄土土-水特征曲线的影响[J]. 科学技术与工程, 2015, 15(36): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201536035.htm

    ZHAO Wenbo, XU Jie, CHENG Qing, et al. Influences of vertical stress and drying-wetting cycles on soil-water characteristic curve of loess[J]. Science Technology and Engineering, 2015, 15(36): 189-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201536035.htm
    [39]
    何芳婵, 张俊然. 原状膨胀土干湿过程中持水特性及孔隙结构分析[J]. 应用基础与工程科学学报, 2022, 30(3): 736-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202203017.htm

    HE Fangchan, ZHANG Junran. Water retention behavior and pore structure analysis of undisturbed expansive soil during drying and wetting[J]. Journal of Basic Science and Engineering, 2022, 30(3): 736-747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202203017.htm
  • Cited by

    Periodical cited type(4)

    1. 刘乃飞,李宁,汪双杰,宋战平,王莉平,徐拴海. 含相变低温岩体水–热–力特性研究进展与展望. 岩石力学与工程学报. 2025(03): 521-542 .
    2. 乔雄,杨小龙,冯勇. 高海拔严寒地区隧道冻害研究现状及展望. 隧道建设(中英文). 2024(02): 233-256 .
    3. 李聪然,马明星,潘懿,宋军涛,杜晓飞,刘文进,岳祖润. 季冻区露天矿山边坡稳定性分析及加固措施研究. 河北地质大学学报. 2024(03): 73-79 .
    4. CHEN Wenhua,XIANG Tian. Frost heaving and crack initiation characteristics of tunnel rock mass in cold regions under low-temperature degradation. Journal of Mountain Science. 2024(08): 2844-2854 .

    Other cited types(2)

Catalog

    Article views (365) PDF downloads (113) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return