• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xing, YAO Yang-ping, CUI Wen-jie. Method for calculating target value of continuous compaction index based on Bootstrap method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1541-1548. DOI: 10.11779/CJGE202208020
Citation: ZHANG Xing, YAO Yang-ping, CUI Wen-jie. Method for calculating target value of continuous compaction index based on Bootstrap method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1541-1548. DOI: 10.11779/CJGE202208020

Method for calculating target value of continuous compaction index based on Bootstrap method

More Information
  • Received Date: December 24, 2021
  • Available Online: September 22, 2022
  • The effective control of compaction quality of the filling body is essential to ensure the service life and operation safety of infrastructures such as roads, dams and airports. With the wide application of the continuous compaction control technology, it is important to determine the reasonable target value of continuous compaction index to guarantee the compaction quality. A novel method for calculating the target value of compaction index based on the Bootstrap method is proposed. Compared with the traditional methods based on the empirical formula along with a limited number of test data, the proposed method statistically establishes a regression model confidence band with the confidence level of (1-α)100% based on the empirical formula, and then determines the target value of compaction index by selecting the upper confidence limit. Finally, the proposed method is verified through the existing field test data of foundation compaction projects from literatures. The results show that the target value calculated by the proposed method has a higher reliability compared to that by the empirical formula. Besides, the errors of compaction index caused by the uncertainty due to the limitation of samples can be amended by the proposed method, and the amendment value increases as the correlation of the test data decrease, which ensures the reliability of the control standard of compaction quality. In addition, compared with that of the confidence interval given in the literatures, the width of the confidence interval obtained by the proposed method is narrower, hence the over-estimation can be avoided, indicating that the proposed method is of significance in both the current engineering design and the prospective application.
  • [1]
    LIU D H, LI Z L, LIAN Z H. Compaction quality assessment of earth-rock dam materials using roller-integrated compaction monitoring technology[J]. Automation in Construction, 2014, 44: 234–246. doi: 10.1016/j.autcon.2014.04.016
    [2]
    LIU D H, LIN M, LI S. Real-time quality monitoring and control of highway compaction[J]. Automation in Construction, 2016, 62: 114–123. doi: 10.1016/j.autcon.2015.11.007
    [3]
    ZHANG Q L, LIU T Y, ZHANG Z S, et al. Compaction quality assessment of rockfill materials using roller-integrated acoustic wave detection technique[J]. Automation in Construction, 2019, 97: 110–121. doi: 10.1016/j.autcon.2018.11.003
    [4]
    姚仰平, 阮杨志, 刘冰阳, 等. 基于北斗的机场高填方施工质量监控技术研发[J]. 岩土工程学报, 2015, 37(增刊2): 6–10. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16246.shtml

    YAO Yang-ping, RUAN Yang-zhi, LIU Bing-yang, et al. Control technology of construction quality for high filled airport based on Beidou satellite navigation system[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 6–10. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16246.shtml
    [5]
    YAO Y P, RUAN Y Z, CHEN J, et al. Research on a real-time monitoring platform for compaction of high embankment in airport engineering[J]. Journal of Construction Engineering and Management, 2018, 144(1): 04017096. doi: 10.1061/(ASCE)CO.1943-7862.0001411
    [6]
    THUMER H, SANDSTROM A. Continuous compaction control, CCC[C]// European Workshop Compaction of Soils and Granular Materials, Presses Fonts et Chaussees. Paris, 2000: 237–246.
    [7]
    MOONEY M A, RINEHART R V, FACAS N W, et al Intelligent Soil Compaction Systems[R]. Washington D C: Transportation Research Board, 2010.
    [8]
    刘东海, 巩树涛, 魏宏云. 基于实时监测的高等级公路路基压实质量快速评估[J]. 土木工程学报, 2014, 47(11): 138–144. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201411019.htm

    LIU Dong-hai, GONG Shu-tao, WEI Hong-yun. Fast assessment on compaction quality of highway subgrade based on real-time monitoring[J]. China Civil Engineering Journal, 2014, 47(11): 138–144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201411019.htm
    [9]
    徐光辉, 高辉, 王哲人. 级配碎石振动压实过程的连续动态监控分析[J]. 岩土工程学报, 2005, 27(11): 1270–1272. doi: 10.3321/j.issn:1000-4548.2005.11.007

    XU Guang-hui, GAO Hui, WANG Zhe-ren. Analysis of continuous dynamic monitoring on vibrating compaction process of graded broken stone[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1270–1272. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.11.007
    [10]
    徐光辉. 路基连续压实控制动力学原理与工程应用[M]. 北京: 科学出版社, 2016.

    XU Guang-hui. Dynamics Principle and Engineering Application for Continuous Compaction Control of Fill Engineering of Subgrade[M]. Beijing: Science Press, 2016. (in Chinese)
    [11]
    铁路路基填筑工程连续压实控制技术规程: Q/CR 9210—2015[S]. 2015.

    Technical Specification for Continuous Compaction Control of Fill Engineering of Railway Earth Structure: Q/CR 9210—2015[S]. 2015. (in Chinese)
    [12]
    公路路基填筑工程连续压实控制系统技术条件: JT/T 1127—2017[S]. 2017.

    Technical Requirements for Continuous Compaction Control System of Fill Engineering of Subgrade for Highway: JT/T 1127—2017[S]. 2017. (in Chinese)
    [13]
    EFRON B. Bootstrap methods: another look at the jackknife breakthroughs in statistics[J]. The Annals of Statistics, 1979, 7(1): 1–26.
    [14]
    李洪双, 吕震宙. PSN曲线的Bootstrap置信带[J]. 机械强度, 2007, 29(4): 642–646. doi: 10.3321/j.issn:1001-9669.2007.04.024

    LI Hong-shuang, LÜ Zhen-zhou. Bootstrap confidence limits for P-S-N curves[J]. Journal of Mechanical Strength, 2007, 29(4): 642–646. (in Chinese) doi: 10.3321/j.issn:1001-9669.2007.04.024
    [15]
    袁修开, 吕震宙, 岳珠峰. 小样本下分位数函数的Bootstrap置信区间估计[J]. 航空学报, 2012, 33(10): 1842–1849. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201210012.htm

    YUAN Xiu-kai, LÜ Zhen-zhou, YUE Zhu-feng. Bootstrap confidence interval of quantile function estimation for small samples[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1842–1849. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201210012.htm
    [16]
    王晓光, 夏耀, 盛兴旺. 高强钢筋疲劳试验小子样空间的Bootstrap分析方法[J]. 铁道科学与工程学报, 2016, 13(6): 1173–1178. doi: 10.3969/j.issn.1672-7029.2016.06.024

    WANG Xiao-guang, XIA Yao, SHENG Xing-wang. The Bootstrap analysis method of high strength steel fatigue tests under small sample space[J]. Journal of Railway Science and Engineering, 2016, 13(6): 1173–1178. (in Chinese) doi: 10.3969/j.issn.1672-7029.2016.06.024
    [17]
    MAZUCHELI J, BARROS E A C, ACHCAR J A. Bootstrap confidence intervals for the mode of the hazard function[J]. Computer Methods and Programs in Biomedicine, 2005, 79(1): 39–47. doi: 10.1016/j.cmpb.2005.02.008
    [18]
    谢桂华, 张家生, 刘荣桂. 沉降计算经验系数的Bootstrap法置信区间估计[J]. 中南大学学报(自然科学版), 2011, 42(9): 2843–2847. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109048.htm

    XIE Gui-hua, ZHANG Jia-sheng, LIU Rong-gui. Estimation of confidence interval of empirical coefficients in calculating foundation settlement by Bootstrap method[J]. Journal of Central South University (Science and Technology), 2011, 42(9): 2843–2847. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201109048.htm
    [19]
    LUO Z, ATAMTURKTUR S, JUANG C H. Bootstrapping for characterizing the effect of uncertainty in sample statistics for braced excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 13–23. doi: 10.1061/(ASCE)GT.1943-5606.0000734
    [20]
    唐小松, 李典庆, 曹子君, 等. 有限数据条件下边坡可靠度分析的Bootstrap方法[J]. 岩土力学, 2016, 37(3): 893–901, 911. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603036.htm

    TANG Xiao-song, LI Dian-qing, CAO Zi-jun, et al. A Bootstrap method for analyzing slope reliability based on limited shear-strength parameter data[J]. Rock and Soil Mechanics, 2016, 37(3): 893–901, 911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603036.htm
    [21]
    骆飞, 罗强, 蒋良潍, 等. 小样本岩土参数的Bootstrap估计及边坡稳定分析[J]. 岩石力学与工程学报, 2017, 36(2): 370–379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm

    LUO Fei, LUO Qiang, JIANG Liang-wei, et al. Bootstrap estimation for geotechnical parameters of small samples and slope stability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 370–379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201702009.htm
    [22]
    罗强, 骆飞, 蒋良潍, 等. 基于Bootstrap法的小样本岩土参数标准值计算[J]. 华中科技大学学报(自然科学版), 2017, 45(8): 93–98. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201708018.htm

    LUO Qiang, LUO Fei, JIANG Liang-wei, et al. Calculating formula for standard value of small-sample geotechnical parameters based on Boot strap method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(8): 93–98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201708018.htm
    [23]
    KUONEN D. An introduction to Bootstrap methods and their application[J]. WBL Angew. Stat. ETHZ, 2018, 2017(19): 1-143.
    [24]
    SHAO J, TU D S. The Jackknife and Bootstrap[M]. New York: Springer, 1995.
    [25]
    王青. 计量经济学模型及R语言的应用[M]. 北京: 经济科学出版社, 2021.

    WANG Qing. Econometrics with R[M]. Beijing: Economic Science Press, 2021. (in Chinese)
    [26]
    叶阿忠, 吴相波. 计量经济学: 数字教材版[M]. 北京: 中国人民大学出版社, 2021.

    YE A-zhong, WU Xiang-bo. Econometrics[M]. Beijing: China Renmin University Press, 2021. (in Chinese)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return