• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHANG Jin, YANG He-ping, XIAO Jie, XU Yong-fu. Soil-water chemical tests and action mechanism of acid rain infiltration into expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1483-1492. DOI: 10.11779/CJGE202208013
Citation: CHANG Jin, YANG He-ping, XIAO Jie, XU Yong-fu. Soil-water chemical tests and action mechanism of acid rain infiltration into expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1483-1492. DOI: 10.11779/CJGE202208013

Soil-water chemical tests and action mechanism of acid rain infiltration into expansive soil

More Information
  • Received Date: December 24, 2020
  • Available Online: September 22, 2022
  • It is very important to clarify the mechanism of soil-water chemical interaction between acid rain and expansive soil for studying the deterioration mechanism of performance of shallow expansive soil and slope stability in acid rain areas. Therefore, the undisturbed expansive soil in the acid rain-affected areas in Baise City, Guangxi Zhuang Autonomous Region is studied. A cyclic water saturated test device is designed to simulate the rainwater infiltration environment with different pH values to carry out soil-water chemical tests. A variety of micro-test techniques are used to explore the evolution law of minerals and chemical components in the expansive soil. The mechanism of soil-water chemical interaction between expansive soil and acid rain is analyzed by using PHREEQC simulation software and soil-water chemical theory. The results show that compared with the static water saturated environment, the dynamic water saturated environment of rainfall infiltration promotes the dissolution and leaching of minerals in the expansive soil, and accelerates the destruction of soil structure. The dissolution and leaching amount of CaO, Fe2O3, K2O in the expansive soil under acid rain infiltration is significantly greater than that of SiO2, Al2O3. The lower the pH value of rainwater, the more the cements such as calcite and free oxides leached between the sheet microstructures of the expansive soil, and the ion-exchange will be enhanced. The interaction between acid rain and minerals in soil is intensified, and part of illite is converted into montmorillonite clay minerals, resulting in the decrease of illite content, the increase of montmorillonite content, the enhancement of soil hydrophilicity and the increase of structural instability, which is not conducive to the stability of expansive soil slopes.
  • [1]
    郑丽英, 陈志安, 张丽, 等. 2006—2017年成都地区酸雨变化特征及趋势分析[J]. 气象科技, 2020, 48(3): 380–386. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003012.htm

    ZHENG Li-ying, CHEN Zhi-an, ZHANG Li, et al. Characteristics and variation trends of acid rain in Chengdu during 2006—2017[J]. Meteorological Science and Technology, 2020, 48(3): 380–386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003012.htm
    [2]
    周晓得, 徐志方, 刘文景, 等. 中国西南酸雨区降水化学特征研究进展[J]. 环境科学, 2017, 38(10): 4438–4446. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201710053.htm

    ZHOU Xiao-de, XU Zhi-fang, LIU Wen-jing, et al. Progress in the studies of precipitation chemistry in acid rain areas of southwest China[J]. Environmental Science, 2017, 38(10): 4438–4446. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201710053.htm
    [3]
    孙平安, 李秀存, 于奭, 等. 酸雨溶蚀碳酸盐岩的源汇效应分析——以广西典型岩溶区为例[J]. 中国岩溶, 2017, 36(1): 101–108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201701013.htm

    SUN Ping-an, LI Xiu-cun, YU Shi, et al. Study on source-sink effect in the process of carbonate rock dissolved by acid rain: An example of typical karst regions in Guangxi [J]. Carsologica Sinica, 2017, 36(1): 101–108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201701013.htm
    [4]
    王苗, 刘敏, 王凯, 等. 2007—2014年湖北省酸雨变化时空特征分析[J]. 气象, 2016, 42(7): 857–864. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201607009.htm

    WANG Miao, LIU Min, WANG Kai, et al. Analysis of variation of acid rain in Hubei during 2007—2014[J]. Meteorological Monthly, 2016, 42(7): 857–864. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201607009.htm
    [5]
    石春娥, 邓学良, 杨元建, 等. 1992—2013年安徽省酸雨变化特征及成因分析[J]. 南京大学学报(自然科学), 2015, 51(3): 508–516. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201503007.htm

    SHI Chun-e, DENG Xue-liang, YANG Yuan-jian, et al. The trend of precipitation acidity in Anhui Province from 1992 to 2013 and its possible reasons[J]. Journal of Nanjing University (Natural Sciences), 2015, 51(3): 508–516. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201503007.htm
    [6]
    BASU A, RAM B K, NANDA N K, et al. Deterioration of shear strength parameters of limestone joints under simulated acid rain condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 135: 104508. doi: 10.1016/j.ijrmms.2020.104508
    [7]
    LI S G, HUO R K, YOSHIAKI F, et al. Effect of acid-temperature-pressure on the damage characteristics of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104079. doi: 10.1016/j.ijrmms.2019.104079
    [8]
    ZHAO J X, LU C H, DENG L M, et al. Impacts of simulated acid solution on the disintegration and cation release of purple rock (mudstone) in Southwest China[J]. Geomorphology, 2018, 316: 35–43. doi: 10.1016/j.geomorph.2018.05.009
    [9]
    QU D X, LI D K, LI X P, et al. Damage evolution mechanism and constitutive model of freeze- thaw yellow sandstone in acidic environment[J]. Cold Regions Science and Technology, 2018, 155: 174–183. doi: 10.1016/j.coldregions.2018.07.012
    [10]
    俞缙, 张欣, 蔡燕燕, 等. 水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究[J]. 岩土力学, 2019, 40(2): 455–464. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902006.htm

    YU Jin, ZHANG Xin, CAI Yan-yan, et al. Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(2): 455–464. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902006.htm
    [11]
    张先伟, 孔令伟, 陈成, 等. 水化学环境对湛江组黏土结构强度的影响研究[J]. 岩土工程学报, 2017, 39(11): 1967–1975. doi: 10.11779/CJGE201711003

    ZHANG Xian-wei, KONG Ling-wei, CHEN Cheng, et al. Effects of hydrochemistry on structural strength of Zhanjiang formation clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 1967–1975. (in Chinese) doi: 10.11779/CJGE201711003
    [12]
    BAKHSHIPOUR Z, ASADI A, HUAT B B K, et al. Long-term intruding effects of acid rain on engineering properties of primary and secondary kaolinite clays[J]. International Journal of Geosynthetics and Ground Engineering, 2016, 2(3): 1–17.
    [13]
    汤文, 姚志宾, 李邵军, 等. 水化学作用对滑坡滑带土的物理力学特性影响试验研究[J]. 岩土力学, 2016, 37(10): 2885–2892. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610020.htm

    TANG Wen, YAO Zhi-bin, LI Shao-jun, et al. Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil: an experimental study[J]. Rock and Soil Mechanics, 2016, 37(10): 2885–2892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610020.htm
    [14]
    赵宇, 崔鹏, 胡良博. 黏土抗剪强度演化与酸雨引发滑坡的关系: 以三峡库区滑坡为例[J]. 岩石力学与工程学报, 2009, 28(3): 576–582. doi: 10.3321/j.issn:1000-6915.2009.03.017

    ZHAO Yu, CUI Peng, HU Liang-bo. Relation between evolution of clay shear strength and landslide induced by acid rain—taking landslides in Three Gorges reservoir area for example[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 576–582. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.03.017
    [15]
    常锦, 杨和平, 肖杰, 等. 酸性环境干湿循环条件下膨胀土的膨胀特性及微观作用分析[J]. 中国公路学报, 2019, 32(3): 34–43. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903005.htm

    CHANG Jin, YANG He-ping, XIAO Jie, et al. Swelling characteristics and microscopical analysis of expansive soil under dry-wet cycles in acid environment[J]. China Journal of Highway and Transport, 2019, 32(3): 34–43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903005.htm
    [16]
    常锦, 杨和平, 肖杰, 等. 酸雨入渗对膨胀土抗剪强度的影响及微观试验研究[J]. 中南大学学报(自然科学版), 2019, 50(1): 206–213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201901026.htm

    CHANG Jin, YANG He-ping, XIAO Jie, et al. Effect of acid rain infiltration on shear strength of expansive soil and its microscopic test[J]. Journal of Central South University (Science and Technology), 2019, 50(1): 206–213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201901026.htm
    [17]
    常锦, 杨和平, 肖杰, 等. 酸雨湿干循环作用下百色膨胀土裂隙发育规律及其微观机制[J]. 中国公路学报, 2021, 34(1): 47–56. doi: 10.3969/j.issn.1001-7372.2021.01.005

    CHANG Jin, YANG He-ping, XIAO Jie, et al. Fissure development law and micro-mechanism of Baise expansive soil under wet-dry cycles of acid rain[J]. China Journal of Highway and Transport, 2021, 34(1): 47–56. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.005
    [18]
    RAMA VARA PRASAD C, REDDY P H P, MURTHY V R, et al. Swelling characteristics of soils subjected to acid contamination[J]. Soils and Foundations, 2018, 58(1): 110–121. doi: 10.1016/j.sandf.2017.11.005
    [19]
    PONNAPUREDDY H R, CHAVALI R V P, PILLAI R J. Swelling of natural soil subjected to acidic and alkaline contamination[J]. Periodica Polytechnica Civil Engineering, 2017, 61(3): 449–453.
    [20]
    MAGGIO R D, GAJO A, WAHID A.S. Chemo-mechanical effects in kaolinite. part 2: exposed samples and chemical and phase analyses[J]. Géotechnique, 2011, 61(6): 449–457. doi: 10.1680/geot.8.P.068
    [21]
    李善梅, 刘之葵, 蒙剑坪. pH值对桂林红黏土界限含水率的影响及其机理分析[J]. 岩土工程学报, 2017, 39(10): 1814–1822. doi: 10.11779/CJGE201710009

    LI Shan-mei, LIU Zhi-kui, MENG Jian-ping. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814–1822. (in Chinese) doi: 10.11779/CJGE201710009
    [22]
    MERKEL B J. 地下水地球化学模拟的原理及应用[M]. 朱义年, 王焰新, 译. 武汉: 中国地质大学出版社, 2005.

    MERKEL B J. Principle and Application of Groundwater Geochemical Modeling[M]. ZHU Yi-nian, WANG Yan-xin, trans. Wuhan: China University of Geosciences Press, 2005. (in Chinese)
    [23]
    刘媛, 梁和成, 唐朝晖, 等. 滑坡水土作用体系中Ca2+的地球化学行为的反向模拟[J]. 水文地质工程地质, 2012, 39(2): 106–110. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202024.htm

    LIU Yuan, LIANG He-cheng, TANG Zhao-hui, et al. Inverse modeling of geochemical behavior of Ca2+ in landslide water-soil interaction system near the Three Gorges Reservoir[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 106–110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202024.htm
    [24]
    周海燕, 周训, 姚锦梅. 广东从化温泉的水文地球化学模拟[J]. 现代地质, 2007, 21(4): 619–623. doi: 10.3969/j.issn.1000-8527.2007.04.005

    ZHOU Hai-yan, ZHOU Xun, YAO Jin-mei. Hydrogeochemical modeling of the Conghua hot spring in Guangdong[J]. Geoscience, 2007, 21(4): 619–623. (in Chinese) doi: 10.3969/j.issn.1000-8527.2007.04.005
    [25]
    谢水波, 陈泽昂, 张晓健, 等. 铀尾矿库区浅层地下水中U(Ⅵ)迁移的模拟[J]. 原子能科学技术, 2007, 41(1): 58–64. doi: 10.3969/j.issn.1000-6931.2007.01.011

    XIE Shui-bo, CHEN Ze-ang, ZHANG Xiao-jian, et al. Simulation of U(Ⅵ) migration in shallow groundwater at uranium mill-tailing site[J]. Atomic Energy Science and Technology, 2007, 41(1): 58–64. (in Chinese) doi: 10.3969/j.issn.1000-6931.2007.01.011
    [26]
    HIEMSTRA T, BARNETT M O, VAN RIEMSDIJK W H. Interaction of silicic acid with goethite[J]. Journal of Colloid and Interface Science, 2007, 310(1): 8–17. doi: 10.1016/j.jcis.2007.01.065
    [27]
    何蕾. 矿物成分与水化学成分对黏性土抗剪强度的控制规律及其应用[D]. 北京: 中国地质大学(北京), 2014: 4–5.

    HE Lei. Impact of Mineralogical Composition and Water Chemistry on the Shear Strength of Clay and Its Application[D]. Beijing: China University of Geosciences, 2014: 4–5. (in Chinese)
    [28]
    CHIGIRA M, NAKAMOTO M, NAKATA E. Weathering mechanisms and their effects on the landsliding of ignimbrite subject to vapor-phase crystallization in the Shirakawa pyroclastic flow, northern Japan[J]. Engineering Geology, 2002, 66(1/2): 111–125.
    [29]
    ANSON R, HAWKINS A. Movement of the soper's wood landslide on the Jurassic fuller's earth, bath, England[J]. Bulletin of Engineering Geology and the Environment, 2002, 61(4): 325–345. doi: 10.1007/s10064-002-0151-8
    [30]
    罗鸿禧, 周芳琴. 郧县胀缩土的矿物成分及微观结构的研究[J]. 工程勘察, 1981, 9(5): 35–38. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198105008.htm

    LUO Hong-xi, ZHOU Fang-qin. Study on mineral composition and microstructure of Yunxian expansion and contraction soil[J]. Engineering Survey, 1981, 9(5): 35–38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198105008.htm
    [31]
    廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.

    LIAO Shi-wen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
  • Cited by

    Periodical cited type(8)

    1. 梅君,王勇,梁宸. 地铁盾构水土中接收对封堵墙扰动作用的研究. 科技通报. 2024(11): 57-62 .
    2. 焦月红,万治安,顾佳伟,王寿鹤,周游,王勇,张跃曦. 装配式钢板箱水土中接收监测分析. 建设科技. 2024(S1): 199-202 .
    3. 胡永利,路林海,刘家海. 富水敏感区既有地铁站盾构接收控水技术研究. 建筑技术. 2023(01): 100-102 .
    4. 彭远胜,欧孝夺,姬凤玲. 铝土尾矿泡沫轻质土单轴抗压力学特性及唯象本构模型. 应用基础与工程科学学报. 2023(03): 675-689 .
    5. 冯红喜,闫文博,朱昕阳,高腾达. 穿黄隧道超大直径盾构接收关键技术研究. 人民黄河. 2023(S1): 127-128+130 .
    6. 孙伟,王兆民,牛宇哲,杨星,杨志勇,江玉生. 北京地铁8号线泥水盾构接收端洞门受力计算及支撑分析. 科技和产业. 2023(23): 249-254 .
    7. 彭远胜,欧孝夺,姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征. 材料导报. 2022(17): 128-133 .
    8. 冯红喜,李一博,张忠炎. 水平注浆加固与钢套筒在盾构接收的应用分析. 山西建筑. 2022(19): 136-138 .

    Other cited types(3)

Catalog

    Article views (174) PDF downloads (79) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return