• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Bo-wen, CAI Guo-qing, LI Jian, ZHANG Guo-guang, ZHAO Cheng-gang. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415. DOI: 10.11779/CJGE202208005
Citation: HAN Bo-wen, CAI Guo-qing, LI Jian, ZHANG Guo-guang, ZHAO Cheng-gang. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415. DOI: 10.11779/CJGE202208005

Development and application of model test system for mud pumping in ballasted track subgrade

More Information
  • Received Date: September 23, 2021
  • Available Online: September 22, 2022
  • In order to study the mud pumping mechanism of ballasted track subgrade on the existing lines in China, a physical modelling system which can simulate the cyclic loading-wetting coupling process is developed. The model sample with a diameter of 500 mm is composed of 350 mm-thick subgrade soil and 200 mm-thick ballast. The whole sample is prepared in a high-strength transparent plexiglass model cylinder. The test system is equipped with four types of sensors to monitor the load, displacement, volumetric water content and pore water pressure, respectively. A high-definition camera is installed to observe the whole test process. The developed test system is used to carry out the mud pumping model tests on the soil samples of typical mud pumping disease sections of railway from Xindian to Taishan. The results show that the dynamic pore water pressure is the key factor for mud pumping. As the volumetric water content increases, the amount of migrated particle caused by dynamic pore water pressure gradually increases. In the saturated state, it will cause a large number of particles to migrate, and the phenomenon of mud pumping is significant. At the end of the tests, the ballast fouling index reaches 25%, which will seriously affect the normal operation of the railway in the actual project. It is necessary to replace the fouled ballast.
  • [1]
    聂如松, 冷伍明, 粟雨, 等. 基床翻浆冒泥土的物理力学性质[J]. 西南交通大学学报, 2018, 53(2): 286-295. doi: 10.3969/j.issn.0258-2724.2018.02.010

    NIE Ru-song, LENG Wu-ming, SU Yu, et al. Physical and mechanical properties of mud pumping soils in railway subgrade bed[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 286-295. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.02.010
    [2]
    KAMRUZZAMAN A H M, HAQUE A, BOUAZZA A. Filtration behaviour of granular soils under cyclic load[J]. Géotechnique, 2008, 58(6): 517-522. doi: 10.1680/geot.2008.58.6.517
    [3]
    HAQUE A, KABIR E, BOUAZZA A. Cyclic filtration apparatus for testing subballast under rail track[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(3): 338-341. doi: 10.1061/(ASCE)1090-0241(2007)133:3(338)
    [4]
    ISRAR J, INDRARATNA B. Mechanical response and pore pressure generation in granular filters subjected to uniaxial cyclic loading[J]. Canadian Geotechnical Journal, 2018, 55(12): 1756-1768. doi: 10.1139/cgj-2017-0393
    [5]
    DUONG T V, CUI Y J, TANG A M, et al. Investigating the mud pumping and interlayer creation phenomena in railway sub-structure[J]. Engineering Geology, 2014, 171: 45-58. doi: 10.1016/j.enggeo.2013.12.016
    [6]
    DUONG T V, CUI Y J, TANG A M, et al. Physical model for studying the migration of fine particles in the railway substructure[J]. Geotechnical Testing Journal, 2014, 37(5): 20130145. doi: 10.1520/GTJ20130145
    [7]
    CHAWLA S, SHAHU J T. Reinforcement and mud-pumping benefits of geosynthetics in railway tracks: model tests[J]. Geotextiles and Geomembranes, 2016, 44(3): 366-380. doi: 10.1016/j.geotexmem.2016.01.005
    [8]
    丁瑜, 陈晓斌, 张家生, 等. 风化红砂岩残积土路基瞬态饱和区动态水压力特征试验研究[J]. 岩土力学, 2019, 40(12): 4740-4750, 4758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912022.htm

    DING Yu, CHEN Xiao-bin, ZHANG Jia-sheng, et al. Experimental study of dynamic water pressure in transient saturated zone of red sandstone residual soil subgrade[J]. Rock and Soil Mechanics, 2019, 40(12): 4740-4750, 4758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912022.htm
    [9]
    张升, 高峰, 陈琪磊, 等. 砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm

    ZHANG Sheng, GAO Feng, CHEN Qi-lei, et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm
    [10]
    杨新安, 高艳灵. 沪宁铁路翻浆冒泥病害的地质雷达检测[J]. 岩石力学与工程学报, 2004, 23(1): 116-119. doi: 10.3321/j.issn:1000-6915.2004.01.022

    YANG Xin-an GAO Yan-ling. GPR inspection for Shanghai—Nanjing railway trackbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 116-119. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.01.022
    [11]
    ANBAZHAGAN P, INDRARATNA B, RUJIKIATKAMJORN C, et al. Using a seismic survey to measure the shear modulus of clean and fouled ballast[J]. Geomechanics and Geoengineering, 2010, 5(2): 117-126. doi: 10.1080/17486020903497431
    [12]
    ANBAZHAGAN P, SU L J, BUDDHIMA I, et al. Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave[J]. Journal of Applied Geophysics, 2011, 74(4): 175-184. doi: 10.1016/j.jappgeo.2011.05.002
    [13]
    ANBAZHAGAN P, DIXIT P S N, BHARATHA T P. Identification of type and degree of railway ballast fouling using ground coupled GPR antennas[J]. Journal of Applied Geophysics, 2016, 126: 183-190. doi: 10.1016/j.jappgeo.2016.01.018
    [14]
    SADEGHI J, MOTIEYAN-NAJAR M E, ZAKERI J A, et al. Improvement of railway ballast maintenance approach, incorporating ballast geometry and fouling conditions[J]. Journal of Applied Geophysics, 2018, 151: 263-273. doi: 10.1016/j.jappgeo.2018.02.020
    [15]
    SRIVASTAVA A, SIVAKUMAR BABU G L. Analytical solutions for protective filters based on soil-retention and permeability criteria with respect to the phenomenon of soil boiling[J]. Canadian Geotechnical Journal, 2011, 48(6): 956-969. doi: 10.1139/t11-014
    [16]
    INDRARATNA B, MUTTUVEL T, KHABBAZ H, et al. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 837-844. doi: 10.1061/(ASCE)1090-0241(2008)134:6(837)
    [17]
    MOFFAT R, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071
    [18]
    SUITS L D, SHEAHAN T C, CHANG D S, et al. A stress-controlled erosion apparatus for studying internal erosion in soils[J]. Geotechnical Testing Journal, 2011, 34(6): 103889. doi: 10.1520/GTJ103889
    [19]
    XIAO M, SHWIYHAT N. Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils[J]. Geotechnical Testing Journal, 2012, 35(6): 104594. doi: 10.1520/GTJ104594
    [20]
    刘泉声, 崔先泽, 张程远, 等. 粒径对多孔介质中悬浮颗粒迁移—沉积特性的影响[J]. 岩土工程学报, 2014, 36(10): 1777-1783. doi: 10.11779/CJGE201410003

    LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, et al. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. (in Chinese) doi: 10.11779/CJGE201410003
    [21]
    白冰, 张鹏远, 宋晓明, 等. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786-1793. doi: 10.11779/CJGE201510006

    BAI Bing, ZHANG Peng-yuan, SONG Xiao-ming, et al. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786-1793. (in Chinese) doi: 10.11779/CJGE201510006
    [22]
    薛传成, 王艳, 刘干斌, 等. 温度和pH对多孔介质中悬浮颗粒渗透迁移的影响[J]. 岩土工程学报, 2019, 41(11): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911020.htm

    XUE Chuan-cheng, WANG Yan, LIU Gan-bin, et al. Effects of temperature and pH on permeation and migration of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911020.htm
    [23]
    韩博文, 冯怀平, 应志超, 等. 振动荷载作用下浸水过程对重载铁路基床变形特性影响研究[J]. 振动与冲击, 2019, 38(1): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201901033.htm

    HAN Bo-wen, FENG Huai-ping, YING Zhi-chao, et al. Influences of soaking process on deformation characteristics of heavy haul railway subgrade under vibration load[J]. Journal of Vibration and Shock, 2019, 38(1): 221-228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201901033.htm
    [24]
    冷伍明, 周文权, 聂如松, 等. 重载铁路粗粒土填料动力特性及累积变形分析[J]. 岩土力学, 2016, 37(3): 728-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603016.htm

    LENG Wu-ming, ZHOU Wen-quan, NIE Ru-song, et al. Analysis of dynamic characteristics and accumulative deformation of coarse-grained soil filling of heavy-haul railway[J]. Rock and Soil Mechanics, 2016, 37(3): 728-736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603016.htm
    [25]
    杨志浩, 岳祖润, 冯怀平, 等. 级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学, 2020, 41(9): 2993-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009016.htm

    YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, et al. Large scale triaxial tests on graded macadam filling and its accumulated plastic strain prediction model[J]. Rock and Soil Mechanics, 2020, 41(9): 2993-3002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009016.htm
    [26]
    EBRAHIMI A, TINJUM J M, EDIL T B. Deformational behavior of fouled railway ballast[J]. Canadian Geotechnical Journal, 2015, 52(3): 344-355. doi: 10.1139/cgj-2013-0271
    [27]
    SELIG E T, WATERS J M. Track Geotechnology and Substructure Management[M]. New York: Thomas Telford Publishing, 1994.
  • Cited by

    Periodical cited type(5)

    1. 孙峰. 临江富水地层超大基坑工程设计方法研究. 山西建筑. 2025(09): 79-83+114 .
    2. 苏友君,丁建军,夏伟,张莉,周恒. 下穿高架桥桩深基坑开挖三维有限元分析. 中国住宅设施. 2025(02): 167-169 .
    3. 王星. 大型综合管廊深基坑变形机理及支护方案设计. 铁道建筑技术. 2025(04): 106-108+165 .
    4. 乔世范,陈道龙,蔡子勇,刘屹颀,孟非,檀俊坤. 考虑多因素影响的柔性挡土墙主动土压力解析. 建筑结构学报. 2025(05): 241-254 .
    5. 李恭晨. 吊脚支护40 m岩土二元构造深基坑变形特性研究. 建筑技术. 2024(S1): 84-89 .

    Other cited types(0)

Catalog

    Article views (219) PDF downloads (92) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return