Citation: | HAN Bo-wen, CAI Guo-qing, LI Jian, ZHANG Guo-guang, ZHAO Cheng-gang. Development and application of model test system for mud pumping in ballasted track subgrade[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1406-1415. DOI: 10.11779/CJGE202208005 |
[1] |
聂如松, 冷伍明, 粟雨, 等. 基床翻浆冒泥土的物理力学性质[J]. 西南交通大学学报, 2018, 53(2): 286-295. doi: 10.3969/j.issn.0258-2724.2018.02.010
NIE Ru-song, LENG Wu-ming, SU Yu, et al. Physical and mechanical properties of mud pumping soils in railway subgrade bed[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 286-295. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.02.010
|
[2] |
KAMRUZZAMAN A H M, HAQUE A, BOUAZZA A. Filtration behaviour of granular soils under cyclic load[J]. Géotechnique, 2008, 58(6): 517-522. doi: 10.1680/geot.2008.58.6.517
|
[3] |
HAQUE A, KABIR E, BOUAZZA A. Cyclic filtration apparatus for testing subballast under rail track[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(3): 338-341. doi: 10.1061/(ASCE)1090-0241(2007)133:3(338)
|
[4] |
ISRAR J, INDRARATNA B. Mechanical response and pore pressure generation in granular filters subjected to uniaxial cyclic loading[J]. Canadian Geotechnical Journal, 2018, 55(12): 1756-1768. doi: 10.1139/cgj-2017-0393
|
[5] |
DUONG T V, CUI Y J, TANG A M, et al. Investigating the mud pumping and interlayer creation phenomena in railway sub-structure[J]. Engineering Geology, 2014, 171: 45-58. doi: 10.1016/j.enggeo.2013.12.016
|
[6] |
DUONG T V, CUI Y J, TANG A M, et al. Physical model for studying the migration of fine particles in the railway substructure[J]. Geotechnical Testing Journal, 2014, 37(5): 20130145. doi: 10.1520/GTJ20130145
|
[7] |
CHAWLA S, SHAHU J T. Reinforcement and mud-pumping benefits of geosynthetics in railway tracks: model tests[J]. Geotextiles and Geomembranes, 2016, 44(3): 366-380. doi: 10.1016/j.geotexmem.2016.01.005
|
[8] |
丁瑜, 陈晓斌, 张家生, 等. 风化红砂岩残积土路基瞬态饱和区动态水压力特征试验研究[J]. 岩土力学, 2019, 40(12): 4740-4750, 4758. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912022.htm
DING Yu, CHEN Xiao-bin, ZHANG Jia-sheng, et al. Experimental study of dynamic water pressure in transient saturated zone of red sandstone residual soil subgrade[J]. Rock and Soil Mechanics, 2019, 40(12): 4740-4750, 4758. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912022.htm
|
[9] |
张升, 高峰, 陈琪磊, 等. 砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm
ZHANG Sheng, GAO Feng, CHEN Qi-lei, et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202005016.htm
|
[10] |
杨新安, 高艳灵. 沪宁铁路翻浆冒泥病害的地质雷达检测[J]. 岩石力学与工程学报, 2004, 23(1): 116-119. doi: 10.3321/j.issn:1000-6915.2004.01.022
YANG Xin-an GAO Yan-ling. GPR inspection for Shanghai—Nanjing railway trackbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 116-119. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.01.022
|
[11] |
ANBAZHAGAN P, INDRARATNA B, RUJIKIATKAMJORN C, et al. Using a seismic survey to measure the shear modulus of clean and fouled ballast[J]. Geomechanics and Geoengineering, 2010, 5(2): 117-126. doi: 10.1080/17486020903497431
|
[12] |
ANBAZHAGAN P, SU L J, BUDDHIMA I, et al. Model track studies on fouled ballast using ground penetrating radar and multichannel analysis of surface wave[J]. Journal of Applied Geophysics, 2011, 74(4): 175-184. doi: 10.1016/j.jappgeo.2011.05.002
|
[13] |
ANBAZHAGAN P, DIXIT P S N, BHARATHA T P. Identification of type and degree of railway ballast fouling using ground coupled GPR antennas[J]. Journal of Applied Geophysics, 2016, 126: 183-190. doi: 10.1016/j.jappgeo.2016.01.018
|
[14] |
SADEGHI J, MOTIEYAN-NAJAR M E, ZAKERI J A, et al. Improvement of railway ballast maintenance approach, incorporating ballast geometry and fouling conditions[J]. Journal of Applied Geophysics, 2018, 151: 263-273. doi: 10.1016/j.jappgeo.2018.02.020
|
[15] |
SRIVASTAVA A, SIVAKUMAR BABU G L. Analytical solutions for protective filters based on soil-retention and permeability criteria with respect to the phenomenon of soil boiling[J]. Canadian Geotechnical Journal, 2011, 48(6): 956-969. doi: 10.1139/t11-014
|
[16] |
INDRARATNA B, MUTTUVEL T, KHABBAZ H, et al. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 837-844. doi: 10.1061/(ASCE)1090-0241(2008)134:6(837)
|
[17] |
MOFFAT R, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal, 2011, 48(3): 399-412. doi: 10.1139/T10-071
|
[18] |
SUITS L D, SHEAHAN T C, CHANG D S, et al. A stress-controlled erosion apparatus for studying internal erosion in soils[J]. Geotechnical Testing Journal, 2011, 34(6): 103889. doi: 10.1520/GTJ103889
|
[19] |
XIAO M, SHWIYHAT N. Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils[J]. Geotechnical Testing Journal, 2012, 35(6): 104594. doi: 10.1520/GTJ104594
|
[20] |
刘泉声, 崔先泽, 张程远, 等. 粒径对多孔介质中悬浮颗粒迁移—沉积特性的影响[J]. 岩土工程学报, 2014, 36(10): 1777-1783. doi: 10.11779/CJGE201410003
LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan, et al. Effects of particle size on characteristics of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1777-1783. (in Chinese) doi: 10.11779/CJGE201410003
|
[21] |
白冰, 张鹏远, 宋晓明, 等. 渗透作用下多孔介质中悬浮颗粒的迁移过程研究[J]. 岩土工程学报, 2015, 37(10): 1786-1793. doi: 10.11779/CJGE201510006
BAI Bing, ZHANG Peng-yuan, SONG Xiao-ming, et al. Transport processes of suspended particles in saturated porous media by column seepage tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1786-1793. (in Chinese) doi: 10.11779/CJGE201510006
|
[22] |
薛传成, 王艳, 刘干斌, 等. 温度和pH对多孔介质中悬浮颗粒渗透迁移的影响[J]. 岩土工程学报, 2019, 41(11): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911020.htm
XUE Chuan-cheng, WANG Yan, LIU Gan-bin, et al. Effects of temperature and pH on permeation and migration of suspended particles in porous media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911020.htm
|
[23] |
韩博文, 冯怀平, 应志超, 等. 振动荷载作用下浸水过程对重载铁路基床变形特性影响研究[J]. 振动与冲击, 2019, 38(1): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201901033.htm
HAN Bo-wen, FENG Huai-ping, YING Zhi-chao, et al. Influences of soaking process on deformation characteristics of heavy haul railway subgrade under vibration load[J]. Journal of Vibration and Shock, 2019, 38(1): 221-228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201901033.htm
|
[24] |
冷伍明, 周文权, 聂如松, 等. 重载铁路粗粒土填料动力特性及累积变形分析[J]. 岩土力学, 2016, 37(3): 728-736. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603016.htm
LENG Wu-ming, ZHOU Wen-quan, NIE Ru-song, et al. Analysis of dynamic characteristics and accumulative deformation of coarse-grained soil filling of heavy-haul railway[J]. Rock and Soil Mechanics, 2016, 37(3): 728-736. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603016.htm
|
[25] |
杨志浩, 岳祖润, 冯怀平, 等. 级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学, 2020, 41(9): 2993-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009016.htm
YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, et al. Large scale triaxial tests on graded macadam filling and its accumulated plastic strain prediction model[J]. Rock and Soil Mechanics, 2020, 41(9): 2993-3002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009016.htm
|
[26] |
EBRAHIMI A, TINJUM J M, EDIL T B. Deformational behavior of fouled railway ballast[J]. Canadian Geotechnical Journal, 2015, 52(3): 344-355. doi: 10.1139/cgj-2013-0271
|
[27] |
SELIG E T, WATERS J M. Track Geotechnology and Substructure Management[M]. New York: Thomas Telford Publishing, 1994.
|