• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIE Yanan, PEI Huimin, WANG Dong, SUN Yongfu, GAO Wei, XU Weikun. Strength characteristics of deep-sea diatomite and their influences on settlement of optical cables[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2194-2200. DOI: 10.11779/CJGE20220800
Citation: XIE Yanan, PEI Huimin, WANG Dong, SUN Yongfu, GAO Wei, XU Weikun. Strength characteristics of deep-sea diatomite and their influences on settlement of optical cables[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2194-2200. DOI: 10.11779/CJGE20220800

Strength characteristics of deep-sea diatomite and their influences on settlement of optical cables

More Information
  • Received Date: June 26, 2022
  • Available Online: February 26, 2023
  • The deep-sea diatomite is a kind of siliceous ooze of deep-sea biodiatom origin, which is featured with very high water content and low strength. A rheological model in fluid mechanics is used to describe the strength of diatomite, and the relationship between the undrained shear strength of diatomite and the shear strain rate is established through the rheological tests. It is found in the tests that the sensitivity of diatomite cannot be ignored. When the optical cables are laid on the deep-sea diatomite, the cable settlement needs to be estimated reasonably. The interaction between the optical cables and the diatomite is explored using the large-deformation finite element approach, in which the effects of strain rate and strain softening are considered. Based on the numerical results, the factors affecting the penetration resistance of cables are discussed, while the cable settlements against a variety of sensitivities are investigated. The settlement ranges of two typical armored optical cables on diatomite are determined.
  • [1]
    DAY R W. Engineering properties of diatomaceous fill[J]. Journal of Geotechnical Engineering, 1995, 121(12): 908-910. doi: 10.1061/(ASCE)0733-9410(1995)121:12(908)
    [2]
    马秋柱, 何智敏, 蔡泽明. 纳米比亚硅藻土的工程特性[J]. 水运工程, 2017, 12: 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201712014.htm

    MA Zhuqiu, HE Zhimin, CAI Zeming. Engineering properties of diatomite in Namibia[J]. Port & Waterway Engineering, 2017, 12: 80-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201712014.htm
    [3]
    任玉宾, 王胤, 杨庆. 典型深海软黏土全流动循环软化特性与微观结构探究[J]. 岩土工程学报, 2019, 41(8): 1562-1568. doi: 10.11779/CJGE201908022

    REN Yubin, WANG Yin, YANG Qing. Full-flow cyclic degradation and micro-structure of representative deep-sea soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1562-1568. (in Chinese) doi: 10.11779/CJGE201908022
    [4]
    李铁刚, 熊志方. 海洋硅藻稳定同位素研究进展[J]. 海洋与湖沼, 2010, 41(4): 645-656. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201004028.htm

    LI Tiegang, XONG Zhifang. Research progress on stable isotopes of Marine diatoms[J]. Oceanologia Et Limnologia Sinica, 2010, 41(4): 645-656. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201004028.htm
    [5]
    MERIFIELD R S, WHITE D J, RANDOLPH M F. The ultimate undrained resistance of partially-embedded pipelines[J]. Géotechnique, 2008, 58(6): 461-470. doi: 10.1680/geot.2008.58.6.461
    [6]
    MERIFIELD R S, WHITE D J, RANDOLPH M F. Effect of surface heave on response of partially embedded pipelines on clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 819-829. doi: 10.1061/(ASCE)GT.1943-5606.0000070
    [7]
    ZHANG Z, LEUNG C F, CHOW Y K. Pipe–soil interaction on free-span shoulder subject to vortex-induced vibration[J]. Canadian Geotechnical Journal, 2020, 57(11): 1704-1718. doi: 10.1139/cgj-2019-0408
    [8]
    SENTHILKUMAR, RAJEEV, ROBERT, et al. Undrained load-displacement behavior of partially embedded pipeline on seabed[J]. Journal of Pipeline Systems Engineering and Practice, 2016, 7(1): 4015016.1.
    [9]
    HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327-350. doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
    [10]
    BISCONTIN G, PESTANA J. Influence of peripheral velocity on vane shear strength of an artificial clay[J]. Geotechnical Testing Journal, 2001, 24(4): 423-429. doi: 10.1520/GTJ11140J
    [11]
    EINAV I, RANDOLPH M. Effect of strain rate on mobilised strength and thickness of curved shear bands[J]. Géotechnique, 2006, 56(7): 501-504. doi: 10.1680/geot.2006.56.7.501
    [12]
    任玉宾, 杨庆, 王胤, 等. 典型深海软黏土触变特性与微观结构探究[J]. 工程地质学报, 2021, 29(5): 1295-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105006.htm

    REN Yubin, YANG Qing, WANG Yin, et al. Experimental study on thixotropic characteristic and microstructural evolution of representative deep-sea soft clay[J]. Journal of Engineering Geology, 2021, 29(5): 1295-1302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105006.htm
    [13]
    WANG D, WHITE D J, RANDOLPH M F. Large deformation finite element analysis of pipe penetration and large amplitude lateral displacement[J]. Canadian Geotechnical Journal, 2010, 47(8): 842-856.
    [14]
    WANG D, BIENEN B, NAZEM M, et al. Large deformation finite element analyses in geotechnical engineering[J]. Computers and Geotechnics, 2015, 65: 104-114
    [15]
    DUTTA S, HAWLADER B, PHILLIPS R. Strain softening and rate effects on soil shear strength in modeling of vertical penetration of offshore pipelines[C]// International Pipeline Conference, Calgary, Alberta, 2012.
    [16]
    RANDOLPH M F, WHITE D J. Pipeline embedment in deep water: processes and quantitative assessment[C]// Proc Offshore Tech Conf, Houston, 2008.
  • Cited by

    Periodical cited type(12)

    1. 胡红敏,孔得宽,王荣斗. 基于修正Peck模型的顶管施工软土地层地表沉降规律研究. 河北工业科技. 2025(01): 52-61 .
    2. 张浩南,谢建斌,杨海涛,李克努,唐未旭,张艳. 主顶千斤顶启用形式对顶管施工轴向受力的影响研究. 水利规划与设计. 2025(03): 139-144 .
    3. 石伟新. 基于顶管施工工艺的城市给排水工程设计. 工程建设与设计. 2025(03): 245-247 .
    4. 洪海华. 淡坑水库输水涵洞顶管施工工艺设计及控制技术分析. 水利科技与经济. 2025(03): 151-156 .
    5. 胡祥星,雷庆关,邓文杰. 并行顶管施工对管土接触压力影响数值模拟分析. 徐州工程学院学报(自然科学版). 2025(01): 16-22 .
    6. 姚言,王奎华,应宏伟,朱成伟,张昌桔,李冰河. 考虑上浮效应的顶管施工引起下方盾构隧道响应简化分析方法. 地基处理. 2024(02): 116-124 .
    7. 陈彬皓. 市政道路给排水管道长距离顶管施工技术研究. 中国建筑金属结构. 2024(04): 133-135 .
    8. 万海峰,沈青松. 浅埋矩形顶管整体背土效应理论计算与分析. 市政技术. 2024(09): 129-134 .
    9. 赵兵. 软弱地层顶管法施工扰动分析及变形控制方法. 水利与建筑工程学报. 2024(04): 66-71 .
    10. 朱希熙. 给排水工程中长距离顶管施工技术研究. 海峡科学. 2024(08): 101-103+160 .
    11. 张纬韬,曹广勇,葛安星,胡聪. 平行矩形顶管施工对地表沉降的影响分析. 四川轻化工大学学报(自然科学版). 2024(06): 91-97 .
    12. 梁志坚,杨瀛. 分仓注浆减阻方式在长距离顶管中的应用. 建筑施工. 2023(01): 121-124+129 .

    Other cited types(2)

Catalog

    Article views (268) PDF downloads (79) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return