Citation: | SONG Dingbao, PU Hefu, ZHANG Chunxue, LI Zhanyi, QIU Jinwei, CHEN Wenbo. Experimental investigation on prefabricated horizontal drain-based vacuum dewatering-solidification combined method for treatment of dredged slurry[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1897-1906. DOI: 10.11779/CJGE20220607 |
[1] |
朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术"的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm
ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of"mud science and application technology"and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm
|
[2] |
王军, 王逸杰, 刘飞禹, 等. 间歇式真空预压联合电渗加固吹填软土试验[J]. 中国公路学报, 2016, 29(10): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201610005.htm
WANG Jun, WANG Yijie, LIU Feiyu, et al. Test of reinforcement by intermittent vacuum preloading- electroosmosis in dredger soft clay[J]. China Journal of Highway and Transport, 2016, 29(10): 37-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201610005.htm
|
[3] |
ZHANG R, DONG C, LU Z, et al. Strength characteristics of hydraulically dredged mud slurry treated by flocculation- solidification combined method[J]. Construction and Building Materials, 2019, 228: 116742. doi: 10.1016/j.conbuildmat.2019.116742
|
[4] |
ZHOU Y, CAI G, CHEESEMAN C, et al. Sewage sludge ash-incorporated stabilization/solidification for recycling and remediation of marine sediments[J]. Journal of Environmental Management, 2022, 301, 113877. doi: 10.1016/j.jenvman.2021.113877
|
[5] |
WANG Q, KONG L, TSENG M L, et al. Solid waste material reuse analysis: filling the road subgrade with riverway silt and sediment[J]. Environmental Science and Pollution Research, 2022, 29(23): 35096-35109. doi: 10.1007/s11356-022-18650-z
|
[6] |
朱伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200204016.htm
ZHU Wei, ZHANG Chunlei, LIU Hanlong, et al. The status quo of dredged spoils utilization[J]. Environmental Science and Technology, 2002, 25(4): 39-41, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200204016.htm
|
[7] |
WANG J, HUANG G, FU H, et al. Vacuum preloading combined with multiple-flocculant treatment for dredged fill improvement[J]. Engineering Geology, 2019, 259, 105194. doi: 10.1016/j.enggeo.2019.105194
|
[8] |
ZHU W, YAN J, YU G. Vacuum preloading method for land reclamation using hydraulic filled slurry from the sea: a case study in coastal China[J]. Ocean Engineering, 2018, 152: 286-299. doi: 10.1016/j.oceaneng.2018.01.063
|
[9] |
CHU J, YAN S, LAM K P. Methods for improvement of clay slurry or sewage sludge[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2012, 165(4): 187-199. doi: 10.1680/grim.11.00015
|
[10] |
CAI Y, QIAO H, WANG J, et al. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading[J]. Engineering Geology, 2017, 222: 10-19. doi: 10.1016/j.enggeo.2017.03.020
|
[11] |
姜彦彬, 何宁, 许滨华, 等. 真空预压负压分布规律模型试验研究[J]. 岩土工程学报, 2017, 39(10): 1874-1883. doi: 10.11779/CJGE201710016
JIANG Yanbin, HE Ning, XU Binghua, et al. Model tests on negative pressure distribution in vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1874-1883. (in Chinese) doi: 10.11779/CJGE201710016
|
[12] |
QIU Q, MO H, DONG Z. Vacuum pressure distribution and pore pressure variation in ground improved by vacuum preloading[J]. Canadian Geotechnical Journal, 2007, 44(12): 1433-1445. doi: 10.1139/T07-064
|
[13] |
CHIBA T, SHINSHA HH, TANI Y. Development of a Vacuum Consolidation Method Employing Horizontal Drains[R]. Tokyo: Japan Dredging and Reclamation Engineering Association Tokyo, 1992.
|
[14] |
NAGAHARA H, FUJIYAMA T, ISHIGURO T, et al. FEM analysis of high airport embankment with horizontal drains[J]. Geotextiles and Geomembranes, 2004, 22(1): 49-62.
|
[15] |
罗玉龙, 彭华, 何金平. 水平塑料排水带固结流态吹填土可行性研究[J]. 武汉理工大学学报, 2008, 30(6): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200806021.htm
LUO Yulong, PENG Hua, HE Jinping. Research on the feasibility of consolidating flowed dredger fill by horizontal plastic drainage strip method[J]. Journal of Wuhan University of Technology, 2008, 30(6): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200806021.htm
|
[16] |
韦剑锋. 天津市滨海新区吹填土工程处理现状及技术改进试验研究: 吹填土水平辐射真空排水固结技术初探[J]. 工程勘察, 2008, 36(6): 20-22, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200806009.htm
WEI Jianfeng. Experimental study on the dredger fill treat state and its technolgy improvement[J]. Geotechnical Investigation & Surveying, 2008, 36(6): 20-22, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200806009.htm
|
[17] |
TANG Y X, MIYAZAKI Y, TSUCHIDA T. Practices of reused dredgings by cement treatment[J]. Soils and Foundations, 2001, 41(5): 129-143.
|
[18] |
丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学, 2011, 32(12): 3591-3596, 3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112009.htm
DING Jianwen, HONG Zhenshun, LIU Songyu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics, 2011, 32(12): 3591-3596, 3603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112009.htm
|
[19] |
张春雷, 汪顺才, 朱伟, 等. 初始含水率对水泥固化淤泥效果的影响[J]. 岩土力学, 2008, 29(增刊1): 567-570. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1114.htm
ZHANG Chunlei, WANG Shuncai, ZHU Wei, et al. Influence of initial water content on cement solidification effect of dredged material[J]. Rock and Soil Mechanics, 2008, 29(S1): 567-570. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1114.htm
|
[20] |
YI Y, GU L, LIU S. Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag[J]. Applied Clay Science, 2015, 103: 71-76.
|
[21] |
YI Y, LISKA M, AI-TABBAA A. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, Lime, and PC[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 267-274.
|
[22] |
鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36(7): 1350-1359. doi: 10.11779/CJGE201407020
BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. (in Chinese) doi: 10.11779/CJGE201407020
|
[23] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Soil Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[24] |
YI Y, LI C, LIU S. Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay[J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014146.
|
[25] |
KANG G, TSUCHIDA T, ATHAPATHTHU A M R G. Strength mobilization of cement-treated dredged clay during the early stages of curing[J]. Soils and Foundations, 2015, 55(2): 375-392.
|
[26] |
城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 中国环境出版社, 2002.
Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: GB 18918—2002[S]. Beijing: China Environmental Press, 2002. (in Chinese)
|
[27] |
OTI J, KINUTHIA J. Stabilised unfired clay bricks for environmental and sustainable use[J]. Applied Clay Science, 2012, 58: 52-59.
|
[28] |
ZHU W, ZHANG C L, CHIU A C. Soil–water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 588-598.
|
[29] |
OUHADI V, YONG R, AMIRI M, et al. Pozzolanic consolidation of stabilized soft clays[J]. Applied Clay Science, 2014, 95: 111-118.
|
[30] |
QUANG N D, CHAI J. Permeability of lime- and cement- treated clayey soil[J]. Canadian Geotechnical Journal, 2015, 52: 1221-1227.
|
1. |
陈威,王法鑫,蒙邹蕾,姚森,王翀霄,孙阳. 大直径盾构推进引起的桩基侧向位移分析. 甘肃科学学报. 2024(02): 95-101 .
![]() | |
2. |
丁智,张默爆,张霄,魏新江,申文明,周俊宏. 饱和土地区不同直径盾构穿越既有隧道的理论研究. 中南大学学报(自然科学版). 2024(04): 1447-1462 .
![]() | |
3. |
张志军,王永杰,陈海伦,贺晨,綦嘉诚,杨智,张连君. 盾构区间隧道下穿暗渠施工稳定性分析. 市政技术. 2024(07): 95-100+108 .
![]() | |
4. |
高子明. 盾构隧道穿越饱和砂土层的流固耦合分析. 低温建筑技术. 2024(11): 131-136 .
![]() | |
5. |
蔡晓明,潘泓,骆冠勇,曹洪. 大直径盾构施工引起的软土竖向变形计算研究. 河南理工大学学报(自然科学版). 2023(01): 185-193 .
![]() | |
6. |
白伟,宁茂权,关振长. 地形不对称条件下盾构隧道掘进施工的地表沉降特性. 福州大学学报(自然科学版). 2023(02): 205-212 .
![]() | |
7. |
房新胜,叶来宾,朱牧原,杜贵新. 清华园隧道大直径泥水盾构始发控制掘进分析. 铁道勘察. 2022(01): 81-86 .
![]() | |
8. |
杨召召,祝彦知,纠永志. 盾构隧道施工引起纵向地表沉降的黏弹性分析. 河南城建学院学报. 2022(04): 1-6+18 .
![]() | |
9. |
汤新辉,首正勇,刘建柯. 超大直径盾构施工引发的上软下硬地层地表沉降规律. 矿冶工程. 2022(05): 34-38+43 .
![]() | |
10. |
许梦飞,姜谙男,史洪涛,李德生,万友生,程利民. 下穿暗涵盾构隧道施工过程损伤-渗流耦合分析. 公路工程. 2022(05): 47-54+101 .
![]() | |
11. |
苏凤阳,朱建才,李东泰,董毓庆,丁智,陈乐华. 上软下硬地层大直径泥水盾构施工土体变形研究. 建筑结构. 2022(S2): 2675-2681 .
![]() | |
12. |
周洁. 大直径泥水盾构机滚动角纠偏技术. 安徽建筑. 2021(01): 164-166 .
![]() | |
13. |
邓皇适,傅鹤林,史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算. 岩土工程学报. 2021(01): 165-173 .
![]() | |
14. |
丁智,何晨阳,董毓庆,吴勇,冯丛烈. 含气地层盾构施工引起的土体变形理论研究. 岩石力学与工程学报. 2021(11): 2330-2343 .
![]() | |
15. |
朱帆济. 大直径泥水盾构施工对粉质黏土地层变形的影响. 施工技术. 2020(09): 71-73 .
![]() | |
16. |
牟天光,祝江林. 不同施工条件下双线盾构隧道施工引发地表变形规律研究. 湖南文理学院学报(自然科学版). 2020(04): 75-79 .
![]() |