• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Dingbao, PU Hefu, ZHANG Chunxue, LI Zhanyi, QIU Jinwei, CHEN Wenbo. Experimental investigation on prefabricated horizontal drain-based vacuum dewatering-solidification combined method for treatment of dredged slurry[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1897-1906. DOI: 10.11779/CJGE20220607
Citation: SONG Dingbao, PU Hefu, ZHANG Chunxue, LI Zhanyi, QIU Jinwei, CHEN Wenbo. Experimental investigation on prefabricated horizontal drain-based vacuum dewatering-solidification combined method for treatment of dredged slurry[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1897-1906. DOI: 10.11779/CJGE20220607

Experimental investigation on prefabricated horizontal drain-based vacuum dewatering-solidification combined method for treatment of dredged slurry

More Information
  • Received Date: May 10, 2022
  • Available Online: March 07, 2023
  • The dredged slurry exhibits the characteristics of high water content, low permeability, high compressibility and low or negligible bearing capacity, and is difficult to be rapidly treated and disposed of. Aiming at this problem, a composite method, i.e., the combined method of prefabricated horizontal drain-based vacuum dewatering and solidification, abbreviated as PHDVDS, is introduced, and a series of model tests are carried out to investigate the volume reduction and reinforcement effects of the PHDVDS method, with lime-activated ground blast furnace slag (GGBS) and cement as the binder, respectively. The performance of PHDVDS method is compared with that of the pure vacuum dewatering method (no binder) and the pure solidification method (no vacuum dewatering, using cement as the binder). During the vacuum dewatering stage of the model tests, the mass of discharged water and the settlement, i.e., volume reduction, are monitored, after which the unconfined compressive strength (UCS) of soil samples at different curing ages is tested, and the development of UCS is analyzed from microstructural point of view by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results indicate that, compared with the pure vacuum dewatering method and pure solidification method, the PHDVDS method demonstrates significantly better volume reduction efficacy and significantly better reinforcement efficacy. For instance, the volume reduction by the PHDVDS method after two-day vacuum dewatering is 7%~43%, higher than that by the pure vacuum dewatering method. The 60-day UCS of the PHDVDS-treated soil is 6 times~54 times higher than that of the pure solidification method.
  • [1]
    朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术"的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm

    ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of"mud science and application technology"and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm
    [2]
    王军, 王逸杰, 刘飞禹, 等. 间歇式真空预压联合电渗加固吹填软土试验[J]. 中国公路学报, 2016, 29(10): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201610005.htm

    WANG Jun, WANG Yijie, LIU Feiyu, et al. Test of reinforcement by intermittent vacuum preloading- electroosmosis in dredger soft clay[J]. China Journal of Highway and Transport, 2016, 29(10): 37-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201610005.htm
    [3]
    ZHANG R, DONG C, LU Z, et al. Strength characteristics of hydraulically dredged mud slurry treated by flocculation- solidification combined method[J]. Construction and Building Materials, 2019, 228: 116742. doi: 10.1016/j.conbuildmat.2019.116742
    [4]
    ZHOU Y, CAI G, CHEESEMAN C, et al. Sewage sludge ash-incorporated stabilization/solidification for recycling and remediation of marine sediments[J]. Journal of Environmental Management, 2022, 301, 113877. doi: 10.1016/j.jenvman.2021.113877
    [5]
    WANG Q, KONG L, TSENG M L, et al. Solid waste material reuse analysis: filling the road subgrade with riverway silt and sediment[J]. Environmental Science and Pollution Research, 2022, 29(23): 35096-35109. doi: 10.1007/s11356-022-18650-z
    [6]
    朱伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200204016.htm

    ZHU Wei, ZHANG Chunlei, LIU Hanlong, et al. The status quo of dredged spoils utilization[J]. Environmental Science and Technology, 2002, 25(4): 39-41, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200204016.htm
    [7]
    WANG J, HUANG G, FU H, et al. Vacuum preloading combined with multiple-flocculant treatment for dredged fill improvement[J]. Engineering Geology, 2019, 259, 105194. doi: 10.1016/j.enggeo.2019.105194
    [8]
    ZHU W, YAN J, YU G. Vacuum preloading method for land reclamation using hydraulic filled slurry from the sea: a case study in coastal China[J]. Ocean Engineering, 2018, 152: 286-299. doi: 10.1016/j.oceaneng.2018.01.063
    [9]
    CHU J, YAN S, LAM K P. Methods for improvement of clay slurry or sewage sludge[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2012, 165(4): 187-199. doi: 10.1680/grim.11.00015
    [10]
    CAI Y, QIAO H, WANG J, et al. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading[J]. Engineering Geology, 2017, 222: 10-19. doi: 10.1016/j.enggeo.2017.03.020
    [11]
    姜彦彬, 何宁, 许滨华, 等. 真空预压负压分布规律模型试验研究[J]. 岩土工程学报, 2017, 39(10): 1874-1883. doi: 10.11779/CJGE201710016

    JIANG Yanbin, HE Ning, XU Binghua, et al. Model tests on negative pressure distribution in vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1874-1883. (in Chinese) doi: 10.11779/CJGE201710016
    [12]
    QIU Q, MO H, DONG Z. Vacuum pressure distribution and pore pressure variation in ground improved by vacuum preloading[J]. Canadian Geotechnical Journal, 2007, 44(12): 1433-1445. doi: 10.1139/T07-064
    [13]
    CHIBA T, SHINSHA HH, TANI Y. Development of a Vacuum Consolidation Method Employing Horizontal Drains[R]. Tokyo: Japan Dredging and Reclamation Engineering Association Tokyo, 1992.
    [14]
    NAGAHARA H, FUJIYAMA T, ISHIGURO T, et al. FEM analysis of high airport embankment with horizontal drains[J]. Geotextiles and Geomembranes, 2004, 22(1): 49-62.
    [15]
    罗玉龙, 彭华, 何金平. 水平塑料排水带固结流态吹填土可行性研究[J]. 武汉理工大学学报, 2008, 30(6): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200806021.htm

    LUO Yulong, PENG Hua, HE Jinping. Research on the feasibility of consolidating flowed dredger fill by horizontal plastic drainage strip method[J]. Journal of Wuhan University of Technology, 2008, 30(6): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200806021.htm
    [16]
    韦剑锋. 天津市滨海新区吹填土工程处理现状及技术改进试验研究: 吹填土水平辐射真空排水固结技术初探[J]. 工程勘察, 2008, 36(6): 20-22, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200806009.htm

    WEI Jianfeng. Experimental study on the dredger fill treat state and its technolgy improvement[J]. Geotechnical Investigation & Surveying, 2008, 36(6): 20-22, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200806009.htm
    [17]
    TANG Y X, MIYAZAKI Y, TSUCHIDA T. Practices of reused dredgings by cement treatment[J]. Soils and Foundations, 2001, 41(5): 129-143.
    [18]
    丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学, 2011, 32(12): 3591-3596, 3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112009.htm

    DING Jianwen, HONG Zhenshun, LIU Songyu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics, 2011, 32(12): 3591-3596, 3603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112009.htm
    [19]
    张春雷, 汪顺才, 朱伟, 等. 初始含水率对水泥固化淤泥效果的影响[J]. 岩土力学, 2008, 29(增刊1): 567-570. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1114.htm

    ZHANG Chunlei, WANG Shuncai, ZHU Wei, et al. Influence of initial water content on cement solidification effect of dredged material[J]. Rock and Soil Mechanics, 2008, 29(S1): 567-570. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1114.htm
    [20]
    YI Y, GU L, LIU S. Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag[J]. Applied Clay Science, 2015, 103: 71-76.
    [21]
    YI Y, LISKA M, AI-TABBAA A. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, Lime, and PC[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 267-274.
    [22]
    鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36(7): 1350-1359. doi: 10.11779/CJGE201407020

    BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. (in Chinese) doi: 10.11779/CJGE201407020
    [23]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Soil Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [24]
    YI Y, LI C, LIU S. Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay[J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014146.
    [25]
    KANG G, TSUCHIDA T, ATHAPATHTHU A M R G. Strength mobilization of cement-treated dredged clay during the early stages of curing[J]. Soils and Foundations, 2015, 55(2): 375-392.
    [26]
    城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 中国环境出版社, 2002.

    Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: GB 18918—2002[S]. Beijing: China Environmental Press, 2002. (in Chinese)
    [27]
    OTI J, KINUTHIA J. Stabilised unfired clay bricks for environmental and sustainable use[J]. Applied Clay Science, 2012, 58: 52-59.
    [28]
    ZHU W, ZHANG C L, CHIU A C. Soil–water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 588-598.
    [29]
    OUHADI V, YONG R, AMIRI M, et al. Pozzolanic consolidation of stabilized soft clays[J]. Applied Clay Science, 2014, 95: 111-118.
    [30]
    QUANG N D, CHAI J. Permeability of lime- and cement- treated clayey soil[J]. Canadian Geotechnical Journal, 2015, 52: 1221-1227.
  • Cited by

    Periodical cited type(16)

    1. 陈威,王法鑫,蒙邹蕾,姚森,王翀霄,孙阳. 大直径盾构推进引起的桩基侧向位移分析. 甘肃科学学报. 2024(02): 95-101 .
    2. 丁智,张默爆,张霄,魏新江,申文明,周俊宏. 饱和土地区不同直径盾构穿越既有隧道的理论研究. 中南大学学报(自然科学版). 2024(04): 1447-1462 .
    3. 张志军,王永杰,陈海伦,贺晨,綦嘉诚,杨智,张连君. 盾构区间隧道下穿暗渠施工稳定性分析. 市政技术. 2024(07): 95-100+108 .
    4. 高子明. 盾构隧道穿越饱和砂土层的流固耦合分析. 低温建筑技术. 2024(11): 131-136 .
    5. 蔡晓明,潘泓,骆冠勇,曹洪. 大直径盾构施工引起的软土竖向变形计算研究. 河南理工大学学报(自然科学版). 2023(01): 185-193 .
    6. 白伟,宁茂权,关振长. 地形不对称条件下盾构隧道掘进施工的地表沉降特性. 福州大学学报(自然科学版). 2023(02): 205-212 .
    7. 房新胜,叶来宾,朱牧原,杜贵新. 清华园隧道大直径泥水盾构始发控制掘进分析. 铁道勘察. 2022(01): 81-86 .
    8. 杨召召,祝彦知,纠永志. 盾构隧道施工引起纵向地表沉降的黏弹性分析. 河南城建学院学报. 2022(04): 1-6+18 .
    9. 汤新辉,首正勇,刘建柯. 超大直径盾构施工引发的上软下硬地层地表沉降规律. 矿冶工程. 2022(05): 34-38+43 .
    10. 许梦飞,姜谙男,史洪涛,李德生,万友生,程利民. 下穿暗涵盾构隧道施工过程损伤-渗流耦合分析. 公路工程. 2022(05): 47-54+101 .
    11. 苏凤阳,朱建才,李东泰,董毓庆,丁智,陈乐华. 上软下硬地层大直径泥水盾构施工土体变形研究. 建筑结构. 2022(S2): 2675-2681 .
    12. 周洁. 大直径泥水盾构机滚动角纠偏技术. 安徽建筑. 2021(01): 164-166 .
    13. 邓皇适,傅鹤林,史越. 小转弯半径曲线盾构隧道开挖引发地表沉降计算. 岩土工程学报. 2021(01): 165-173 . 本站查看
    14. 丁智,何晨阳,董毓庆,吴勇,冯丛烈. 含气地层盾构施工引起的土体变形理论研究. 岩石力学与工程学报. 2021(11): 2330-2343 .
    15. 朱帆济. 大直径泥水盾构施工对粉质黏土地层变形的影响. 施工技术. 2020(09): 71-73 .
    16. 牟天光,祝江林. 不同施工条件下双线盾构隧道施工引发地表变形规律研究. 湖南文理学院学报(自然科学版). 2020(04): 75-79 .

    Other cited types(15)

Catalog

    Article views (426) PDF downloads (141) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return