• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Yue, DAI Lei, WEI Qi. Experimental study on seepage erosion based on transparent soil and particle tracing technology[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1133-1140. DOI: 10.11779/CJGE202206018
Citation: LIANG Yue, DAI Lei, WEI Qi. Experimental study on seepage erosion based on transparent soil and particle tracing technology[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1133-1140. DOI: 10.11779/CJGE202206018

Experimental study on seepage erosion based on transparent soil and particle tracing technology

More Information
  • Received Date: May 19, 2021
  • Available Online: September 22, 2022
  • Seepage erosion is one of the main reasons for the instability and failure of hydraulic engineering. In the process of seepage erosion, the fine particles of the soil are gradually lost, and the permeability of the soil is enhanced, which further affects the loss of particles, and eventually even leads to instability and destruction. The seepage erosion is a typical fluid-solid coupling problem. To explore the interaction between fluid movement and particle loss in the process of seepage erosion from the mesoscopic level, by use of the transparent soil technology, a set of seepage erosion test system based on the double light source PIV/PTV is developed. The fused quartz and solution of CaBr2 are used as transparent soil and pore fluid. The movement of pore solution and fine particles in the soil during seepage erosion is observed and recorded. The flow velocity of different sections is compared with the macroscopic flow velocity of the sample, and it is found that when the hydraulic gradient is small, the measured flow velocity of the section is larger than the macroscopic flow velocity of the sample. With the increase of hydraulic gradient, the macroscopic velocity of the sample is gradually larger than the measured velocity of the cross-section, and the closer to the center of the sample, the smaller the difference between the macroscopic velocity and the cross-section velocity. At the same time, the fine particles in the sample gradually transitioned from a stable state to move perpendicular to the plane of the water inlet and outlet, and gradually lose. Compared with the calculated results of the critical hydraulic gradient formula for cohesive soil, it is found that the critical hydraulic gradient obtained through the experiment is slightly lower than the theoretical result. However, the regularity reflected by the experimental results is consistent with the traditional test results. It is shown that the test system has high reliability in the meso-simulation of seepage erosion, and has significance for the study of seepage erosion from the meso-level.
  • [1]
    刘杰. 土的渗透破坏及控制研究[M]. 北京: 中国水利水电出版社, 2014.

    LIU Jie. Piping and Seepage Control of Soil[M]. Beijing: China Water Power Press, 2014. (in Chinese)
    [2]
    李广信. 论土骨架与渗透力[J]. 岩土工程学报, 2016, 38(8): 1522–1528. doi: 10.11779/CJGE201608021

    LI Guang-xin. On soil skeleton and seepage force[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1522–1528. (in Chinese) doi: 10.11779/CJGE201608021
    [3]
    LIANG Y, ZENG C, WANG J J, et al. Constant gradient erosion apparatus for appraisal of piping behavior in upward seepage flow[J]. Geotechnical Testing Journal, 2017, 40(4): 630–642.
    [4]
    LIANG Y, YEH T C J, MA C, et al. Experimental investigation of internal erosion behaviours in inclined seepage flow[J]. Hydrological Processes, 2020, 34(26): 5315–5326. doi: 10.1002/hyp.13944
    [5]
    LIANG Y, YEH T C J, WANG J J, et al. Onset of suffusion in upward seepage under isotropic and anisotropic stress conditions[J]. European Journal of Environmental and Civil Engineering, 2019, 23(12): 1520–1534. doi: 10.1080/19648189.2017.1359110
    [6]
    刘杰, 谢定松, 崔亦昊. 江河大堤堤基砂砾石层管涌破坏危害性试验研究[J]. 岩土工程学报, 2009, 31(8): 1188–1191. doi: 10.3321/j.issn:1000-4548.2009.08.006

    LIU Jie, XIE Ding-song, CUI Yi-hao. Destructive tests on piping failure of sandy gravel layer of river dikes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1188–1191. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.08.006
    [7]
    姚志雄, 周健, 张刚, 等. 颗粒级配对管涌发展的影响试验研究[J]. 水利学报, 2016, 47(2): 200–208. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602010.htm

    YAO Zhi-xiong, ZHOU Jian, ZHANG Gang, et al. Experimental study of particle grading impact on piping mechanism[J]. Journal of Hydraulic Engineering, 2016, 47(2): 200–208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602010.htm
    [8]
    杜建明, 房倩, 刘翔, 等. 透明土物理模拟试验技术现状与趋势[J]. 科学技术与工程, 2021, 21(3): 852–861. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202103002.htm

    DU Jian-ming, FANG Qian, LIU Xiang, et al. The present and development trend of physical simulation experiment technology for transparent soils[J]. Science Technology and Engineering, 2021, 21(3): 852–861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202103002.htm
    [9]
    CHANEY R C, DEMARS K R, WELKER A L, et al. Applied research using a transparent material with hydraulic properties similar to soil[J]. Geotechnical Testing Journal, 1999, 22(3): 266. doi: 10.1520/GTJ11117J
    [10]
    LIU H L, ZHONG H Y, GU X, et al. Transparent soil model testing on ground settlement induced by parallel tunnels excavation[J]. Journal of Civil and Environmental Engineering, 2021, 43(1): 1–10.
    [11]
    XIANG Y Z, LIU H L, ZHANG W G, et al. Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism[J]. Tunnelling and Underground Space Technology, 2018, 74: 178–184. doi: 10.1016/j.tust.2018.01.020
    [12]
    ZHANG W G, ZHONG H Y, XIANG Y Z, et al. Visualization and digitization of model tunnel deformation via transparent soil testing technique[J]. Underground Space, 2020.
    [13]
    QI C G, ZHENG J H, ZUO D J, et al. Experimental investigation on soil deformation caused by pile buckling in transparent media[J]. Geotechnical Testing Journal, 2018, 41(6): 1050–1062.
    [14]
    ZHENG J H, QI C G, ZHAO X, et al. Experimental simulation on open-ended pipe pile penetration using transparent granule[J]. KSCE Journal of Civil Engineering, 2020, 24(8): 2281–2292. doi: 10.1007/s12205-020-1235-3
    [15]
    周东, 刘汉龙, 仉文岗, 等. 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686–2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm

    ZHOU Dong, LIU Han-long, ZHANG Wen-gang, et al. Transparent soil model test on the displacement field of soil around single passive pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2686–2694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm
    [16]
    SUI W H, ZHENG G S. An experimental investigation on slope stability under drawdown conditions using transparent soils[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(3): 977–985. doi: 10.1007/s10064-017-1082-8
    [17]
    王壮, 李驰, 丁选明. 基于透明土技术土岩边坡滑移机理的模型试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 185–188. doi: 10.11779/CJGE2019S2047

    WANG Zhuang, LI Chi, DING Xuan-ming. Model tests on sliding mechanism of soil-rock slopes based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 185–188. (in Chinese) doi: 10.11779/CJGE2019S2047
    [18]
    张建伟, 李贝贝, 樊亚龙, 等. 基于透明土模型试验的斜坡加载土体破坏特征研究[J]. 河南大学学报(自然科学版), 2020, 50(6): 717–723. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR202006010.htm

    ZHANG Jian-wei, LI Bei-bei, FAN Ya-long, et al. Study on loading failure characteristics of slope based on transparent soil model test[J]. Journal of Henan University (Natural Science), 2020, 50(6): 717–723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR202006010.htm
    [19]
    梁越, 陈鹏飞, 林加定, 等. 基于透明土技术的多孔介质孔隙流动特性研究[J]. 岩土工程学报, 2019, 41(7): 1361–1366. doi: 10.11779/CJGE201907022

    LIANG Yue, CHEN Peng-fei, LIN Jia-ding, et al. Study on pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361–1366. (in Chinese) doi: 10.11779/CJGE201907022
    [20]
    武亚军, 李俊鹏, 姜海波, 等. 不同颗粒级配透明黏土的固结与渗透特性[J]. 东北大学学报(自然科学版), 2020, 41(6): 875–880. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202006020.htm

    WU Ya-jun, LI Jun-peng, JIANG Hai-bo, et al. Consolidation and permeability characteristics of transparent clay with different grain composition[J]. Journal of Northeastern University (Natural Science), 2020, 41(6): 875–880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202006020.htm
    [21]
    由长福, 祁海鹰, 徐旭常, 等. 采用PTV技术研究循环流化床内气固两相流动[J]. 应用力学学报, 2004, 21(4): 1–5, 165. doi: 10.3969/j.issn.1000-4939.2004.04.001

    YOU Chang-fu, QI Hai-ying, XU Xu-chang, et al. Investigation to gas-particle two-phase flow in CFB using PTV technology[J]. Chinese Journal of Applied Mechanics, 2004, 21(4): 1–5, 165. (in Chinese) doi: 10.3969/j.issn.1000-4939.2004.04.001
    [22]
    杨福胜, 张早校, 王斯民, 等. 粒子追踪测速(PTV)技术及其在多相流测试中的应用[J]. 流体机械, 2014, 42(2): 37–42. doi: 10.3969/j.issn.1005-0329.2014.02.009

    YANG Fu-sheng, ZHANG Zao-xiao, WANG Si-min, et al. Particle tracking velocimetry and its application to the measurement of multiphase flow-A review[J]. Fluid Machinery, 2014, 42(2): 37–42. (in Chinese) doi: 10.3969/j.issn.1005-0329.2014.02.009
    [23]
    郑金海, 丁星宇, 管大为, 等. 循环荷载作用下海上风机单桩基础周围砂土沉降与对流特性[J]. 河海大学学报(自然科学版), 2020, 48(6): 552–561. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202006011.htm

    ZHENG Jin-hai, DING Xing-yu, GUAN Da-wei, et al. Characteristics of soil subsidence and convective motion around offshore windfarm monopile foundations subjected to long-term cyclic loading [J]. Journal of Hohai University(Natural Sciences), 2020, 48(6): 552–561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202006011.htm
    [24]
    ZHANG W, KANG J H, LEE S J. Visualization of saltating sand particle movement near a flat ground surface[J]. Journal of Visualization, 2007, 10(1): 39–46. doi: 10.1007/BF03181802
    [25]
    WANG Y, WANG D W, WANG L, et al. Measurement of sand creep on a flat sand bed using a high-speed digital camera[J]. Sedimentology, 2009, 56(6): 1705–1712.
    [26]
    LELOUVETEL J, NAKAGAWA M, SATO Y, et al. Effect of bubbles on turbulent kinetic energy transport in downward flow measured by time-resolved PTV[J]. Experiments in Fluids, 2011, 50(4): 813–823.
    [27]
    周云龙, 李洪伟, 范振儒. 基于PTV法对油气水三相流流场的测定[J]. 化工学报, 2008, 59(10): 2505–2510. doi: 10.3321/j.issn:0438-1157.2008.10.013

    ZHOU Yun-long, LI Hong-wei, FAN Zhen-ru. Measurement of flow field of oil-air-water three-phase based on PTV[J]. Journal of Chemical Industry and Engineering, 2008, 59(10): 2505–2510. (in Chinese) doi: 10.3321/j.issn:0438-1157.2008.10.013
    [28]
    孔纲强, 孙学谨, 刘汉龙, 等. 孔隙液体对透明土渗透特性影响对比试验[J]. 水利学报, 2017, 48(11): 1303–1310. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201711005.htm

    KONG Gang-qiang, SUN Xue-jin, LIU Han-long, et al. Contrast experiments on permeability of transparent soil influenced by pore fluids[J]. Journal of Hydraulic Engineering, 2017, 48(11): 1303–1310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201711005.htm
    [29]
    张仪萍, 李亮, 王思照. 透明土中孔隙流体的实验研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1828–1834. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201410017.htm

    ZHANG Yi-ping, LI Liang, WANG Si-zhao. Experimental study on pore fluid for forming transparent soil[J]. Journal of Zhejiang University(Engineering Science), 2014, 48(10): 1828–1834. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201410017.htm
    [30]
    孔纲强, 张鑫蕊, 许文傧, 等. 透明土中孔隙液体折射率、黏度系数与稳定性[J]. 水利水电科技进展, 2017, 37(4): 25–29. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201704005.htm

    KONG Gang-qiang, ZHANG Xin-rui, XU Wen-bin, et al. Refractive index, viscosity coefficient and stability of pore fluids in transparent soil[J]. Advances in Science and Technology of Water Resources, 2017, 37(4): 25–29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201704005.htm
    [31]
    齐昌广, 左殿军, 王新泉. 基于透明土和图像测量的试验模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2017.

    QI Chang-guang, ZUO Dian-jun, WANG Xin-quan. Experimental Simulation Technology Based on Transparent Soil and Image Measurement and Its Application[M]. Beijing: China Architecture and Building Press, 2017. (in Chinese)
    [32]
    沙金煊. 多孔介质中的管涌研究[J]. 水利水运科学研究, 1981(3): 89–93. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198103006.htm

    SHA Jin-xuan. Research on piping in porous media[J]. Journal of Nanjing Hydraulic Research Institute, 1981(3): 89–93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198103006.htm
    [33]
    许联锋, 陈刚, 李建中, 等. 粒子图像测速技术研究进展[J]. 力学进展, 2003, 33(4): 533–540. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200304009.htm

    XU Lian-feng, CHEN Gang, LI Jian-zhong, et al. Reseach progress of particle image velocimetry[J]. Advances in Mechanics, 2003, 33(004): 533–540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200304009.htm
    [34]
    王灿星, 林建忠, 山本富士夫. 二维PIV图像处理算法[J]. 水动力学研究与进展(A辑), 2001, 16(4): 399–404. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200104000.htm

    WANG Can-xing, LIN Jian-zhong, Yamamoto Fujio. An algorithm for two-dimensional PIV images[J]. Journal of Hydrodynamics, 2001, 16(4): 399–404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200104000.htm
    [35]
    胡涛. PTV匹配算法的对比分析[D]. 北京: 清华大学, 2010.

    HU Tao. Comparison of Particle Matching Algorithms for PTV[D]. Beijing: Tsinghua University, 2010. (in Chinese)
    [36]
    BAEK S J, LEE S J. A new two-frame particle tracking algorithm using match probability[J]. Experiments in Fluids, 1996, 22(1): 23–32.
    [37]
    靳斌, 杨冠玲, 何振江, 等. 一种利用示踪粒子群体运动特征的PTV方法[J]. 光学技术, 2000, 26(1): 16–18. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200001004.htm

    JIN Bin, YANG Guan-ling, HE Zhen-jiang, et al. A fluid field velocimetry method basing on tracers' group property[J]. Optical Technology, 2000, 26(1): 16–18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200001004.htm
  • Cited by

    Periodical cited type(15)

    1. 祁燕,张峰瑞,张能,赵灿,王进智,刘念. 察尔汗盐湖低承载力饱和盐渍土强夯加碎石排水桩(DPD)地基处理工艺. 建筑科学. 2025(03): 155-161 .
    2. 刘琛尧,晏启祥,孙润方,王绪,邓宝华,陈耀. 基于三维离散-连续耦合的岩溶隧道突水破坏模式研究. 水文地质工程地质. 2024(02): 163-171 .
    3. 晏启祥,刘琛尧,孙润方,王绪,谢文清,陈耀. 基于离散-连续耦合的岩溶隧道防突岩体安全厚度预测. 中国铁道科学. 2024(02): 90-100 .
    4. 杨晓华,王东清,张莎莎,孔祥鑫,李安洪,赵彦虎. 盐湖区高速铁路长短桩复合地基变形特性. 交通运输工程学报. 2024(03): 181-192 .
    5. 许盛,杨明山,唐志勇,杨皓宇,李小兴,刘念. 察尔汗盐湖地区饱和盐渍软土地基处理. 人民长江. 2024(S2): 178-184 .
    6. 吴祥业,庞政,赵善坤,张玉江,吕坤,王帅. 重复采动巷道围岩裂纹跨尺度演化规律及其力学机理. 煤炭学报. 2024(S2): 579-592 .
    7. 侯超群,程一朋,李永鑫,孙志彬,蒋逍文. 基于离散-连续耦合法的埋地管道受荷过程模拟分析. 合肥工业大学学报(自然科学版). 2023(01): 96-103 .
    8. 谭鑫,尹心,胡政博,裘钊辉,陈昌富. 筋箍碎石桩承载机制的三维离散-连续介质耦合数值模拟. 铁道学报. 2023(04): 139-147 .
    9. 王晓东. 公路工程软基加固碎石桩施工技术应用. 交通世界. 2023(16): 37-39 .
    10. 杨飞鹏. 水利工程中复合地基在软弱地基中的应用. 陕西水利. 2022(01): 167-168+171 .
    11. 蒲松,叶来宾,余涛,方勇,江俊杰. 白马隧道软弱围岩掌子面稳定性研究. 地下空间与工程学报. 2022(S1): 194-201 .
    12. 李康乐,邱恩喜,孙希望,张蕊,聂文峰. 基于模型试验及耦合数值分析的XCC桩挤土效应研究. 土木工程与管理学报. 2022(05): 136-144 .
    13. 曾祥胜,翟健梁,陈佳煜. 矿物掺合料对干拌水泥碎石桩力学性能的影响. 青海交通科技. 2022(05): 55-61 .
    14. 谢超. 高密度电法在清花高速公路岩溶区勘察中的应用. 青海交通科技. 2022(05): 62-69 .
    15. 王志杰,杜逸文,姜逸帆,吴凡,齐永立,周平. 砂化白云岩地层隧道掌子面失稳机制研究. 岩石力学与工程学报. 2021(S2): 3118-3126 .

    Other cited types(19)

Catalog

    Article views (283) PDF downloads (236) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return