• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Hongxin, LÜ Dongjinag, FENG Shijin, ZHANG Xiaolei, WU Shaojie. Evolution of physical and mechanical properties of municipal solid waste in a landfill with low kitchen waste content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1850-1858. DOI: 10.11779/CJGE20220551
Citation: CHEN Hongxin, LÜ Dongjinag, FENG Shijin, ZHANG Xiaolei, WU Shaojie. Evolution of physical and mechanical properties of municipal solid waste in a landfill with low kitchen waste content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1850-1858. DOI: 10.11779/CJGE20220551

Evolution of physical and mechanical properties of municipal solid waste in a landfill with low kitchen waste content

More Information
  • Received Date: May 04, 2022
  • Available Online: September 06, 2023
  • The classified treatment of the municipal solid waste (MSW) will lead to a significant decline in the proportion of kitchen waste in landfills in China, which puts forward new requirements for the long-term safe operation of landfills. To evaluate the evolution of the physical and mechanical properties of waste in low kitchen waste landfills, the in-situ pumping and resistivity tests, and the laboratory tests on waste components, water content and shear strength of an MSW landfill with low kitchen waste content in China are carried out. The major conclusions are as follows: (1) The waste components only slightly change after two years of pumping, but the properties of the MSW become more scattering. (2) The water content is at a high level of 86%~161% which is affected by the landfilling history and location, and the range decreases to 42%~116% after pumping. The overall leachate level declines, but there is a local area with a high water content at the depth of 10~15 m, and the local leachate accumulation may be due to component dislocation and migration caused by pumping. (3) The cohesion and internal friction angle vary widely, and their ranges are 0~20 kPa and 15°~30°, respectively. The cohesion is overall lower than that of the domestic traditional landfill with a high kitchen waste content. The shear strength of the MSW after pumping is generally reduced, but the shear hardening phenomenon is more obvious.
  • [1]
    魏海云, 詹良通, 陈云敏, 等. 城市生活垃圾持水曲线的试验研究[J]. 岩土工程学报, 2007, 29(5): 712-716. http://www.cgejournal.com/cn/article/id/12489

    WEI Haiyun, ZHAN Liangtong, CHEN Yunmin, et al. Experimental study on soil water characteristic curve of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 712-716. (in Chinese) http://www.cgejournal.com/cn/article/id/12489
    [2]
    FENG S J, CHEN Z W, CHEN H X, et al. Slope stability of landfills considering leachate recirculation using vertical wells[J]. Engineering Geology, 2018, 241: 76-85. doi: 10.1016/j.enggeo.2018.05.013
    [3]
    陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001

    CHEN Y. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) doi: 10.11779/CJGE201401001
    [4]
    柯瀚, 胡杰, 吴小雯, 等. 竖井抽水下垃圾填埋场渗滤液运移规律研究[J]. 岩土工程学报, 2018, 40(5): 786-793. doi: 10.11779/CJGE201805002

    KE Han, HU Jie, WU Xiaowen, et al. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. (in Chinese) doi: 10.11779/CJGE201805002
    [5]
    FENG S J, BAI Z B, CAO B Y, et al. The use of electrical resistivity tomography and borehole to characterize leachate distribution in Laogang landfill, China[J]. Environmental Science and Pollution Research, 2017, 24(25): 20811-20817. doi: 10.1007/s11356-017-9853-0
    [6]
    涂帆, 钱学德. 中美垃圾填埋场垃圾土的重度、含水率和相对密度[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3075-3081.

    TU Fan, QIAN Xuede. Unit weight, water content and specific gravity of municipal solid waste in China and United States[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3075-3081. (in Chinese)
    [7]
    孙春光, 冯银均, 骆振中, 等. 基于简化毕肖普法对生活垃圾土堆体边坡稳定性影响因素的影响度分析研究[J]. 环境卫生工程, 2020, 28(2): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWS202002017.htm

    SUN Chunguang, FENG Yinjun, LUO Zhenzhong, et al. Influence degree analytical investigation on influence factors of slope stability of MSW mound based on simplified bishop method[J]. Environmental Sanitation Engineering, 2020, 28(2): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJWS202002017.htm
    [8]
    陈云敏, 林伟岸, 詹良通, 等. 城市生活垃圾抗剪强度与填埋龄期关系的试验研究[J]. 土木工程学报, 2009 (3): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903024.htm

    CHEN Yunmin, LIN Weian, ZHAN Liangtong, et al. A study on the relationship between the shear strength of municipal solid waste and the fill age[J]. China Civil Engineering Journal, 2009 (3): 111-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200903024.htm
    [9]
    FENG S J, GAO K W, CHEN Y X, et al. Geotechnical properties of municipal solid waste at Laogang Landfill, China[J]. Waste Management, 2017, 63: 354-365. doi: 10.1016/j.wasman.2016.09.016
    [10]
    孙秀丽. 城市固体废弃物变形及强度特性研究[D]. 大连: 大连理工大学, 2007.

    SUN Xiuli. Characterization of Deformation and Strength for Municipal Solid Waste[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
    [11]
    赵阳. 城市固体废弃物动力特性试验研究[D]. 大连: 大连理工大学, 2010.

    ZHAO Yang. Experimental Study on the Dynamic Behavior of Municipal Solid Waste[D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
    [12]
    生活垃圾卫生填埋场岩土工程技术规范: CJJ 176—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Technical Code for Geotechnical Engineering of Municipal Solid Waste Sanitary Landfill: CJJ 176—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [13]
    张季如, 陈超敏. 城市生活垃圾抗剪强度参数的测试与分析[J]. 岩石力学与工程学报, 2003, 22(1): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301020.htm

    ZHANG Jiru, CHEN Chaomin. Measurement and analysis on shear strength parameters of municipal solid waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 110-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200301020.htm
    [14]
    RAMAIAH B, RAMANA G, BANSAL B. Field and large scale laboratory studies on dynamic properties of emplaced municipal solid waste from two dump sites at Delhi, India[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 340-357.
    [15]
    STARK T D, HUVAJ-SARIHAN N, LI G C. Shear strength of municipal solid waste for stability analyses[J]. Environmental Geology, 2009, 57(8): 1911-1923.
    [16]
    Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions: ASTM D3080/ D3080M—11[S]. 2011.
    [17]
    朱向荣, 王朝晖, 方鹏飞. 杭州天子岭垃圾填埋场扩容可行性研究[J]. 岩土工程学报, 2002, 24(3): 281-285. http://www.cgejournal.com/cn/article/id/10951

    Zhu Xiangrong, WANG Chaohui, FANG Pengfei. Study on feasibility of enlarging capacity in Tianziling waste landfill[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 281-285. (in Chinese) http://www.cgejournal.com/cn/article/id/10951
    [18]
    GOMES C, ERNESTO A, LOPES M L, et al. Sanitary landfill of Santo Tirso: municipal waste physical, chemical and mechanical properties[C]// Proc 4th Int Congress on Environmental Geotechnics, Rio de Janeiro, Brazil. 2002: 255-261.
    [19]
    MACHADO S L, Karimpour-Fard M, SHARIATMADARI N, et al. Evaluation of the geotechnical properties of MSW in two Brazilian landfills[J]. Waste Management, 2010, 30(12): 2579-2591.
    [20]
    CHEN Y M, ZHAN T L T, WEI H Y, et al. Aging and compressibility of municipal solid wastes[J]. Waste Management, 2009, 29(1): 86-95.
    [21]
    ZHANG W, YUAN S. Characterizing preferential flow in landfilled municipal solid waste[J]. Waste Management, 2019, 84: 20-28.
    [22]
    LANDVA A, KNOWLES G D. Geotechnics of waste fills: theory and practice[M]. Philadephia PA: ASTM, 1990.
    [23]
    REDDY K R, HETTIARACHCHI H, PARAKALLA N S, et al. Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA[J]. Waste Management, 2009, 29(2): 952-959.
    [24]
    BAREITHER C A, BENSON C H, EDIL T B. Effects of waste composition and decomposition on the shear strength of municipal solid waste[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(10): 1161-1174.
    [25]
    HOSSAIN M S, HAQUE M A. The effects of daily cover soils on shear strength of municipal solid waste in bioreactor landfills[J]. Waste Management, 2008, 29(5): 1568-1576.
    [26]
    HARRIS J M, SHAFER A L, DEGROFF W, et al. Shear strength of degraded reconsitituted municipal solid waste[J]. Geotechnical Testing Journal, 2005, 29(2): 141-148. .
    [27]
    ZEKKOS D, ATHANASOPOULOS G A, BRAY J D, et al. Large-scale direct shear testing of municipal solid waste[J]. Waste Management, 2010, 30(8/9): 1544-1555.
    [28]
    GMOES C, LOPES M L, OLIVEIRA P J V. Municipal solid waste shear strength parameters defined through laboratorial and in situ tests[J]. Journal of the Air & Waste Management Association, 2013, 63(11): 1352-1368.
    [29]
    SINGHMK SINGH M K, SHARMAJS SHARMA J S, FLEMINGIR FLEMING I R. Shear strength testing of intact and recompacted samples of municipal solid waste[J]. Canadian Geotechnical Journal, 2009, 46(10): 1133-1145.
    [30]
    MIYAMOTO S, YASUFUKU N, ISHIKURA R, et al. In-situ shearing response and shear strength of various solid waste ground focused on fibrous materials composition[C]// Proceedings of the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro, Cambridge, U K. 2014: 1357-1362.
    [31]
    ABREU A, VILAR O. Influence of composition and degradation on the shear strength of municipal solid waste[J]. Waste Management, 2017, 68: 263-274.
    [32]
    施建勇, 朱俊高, 刘荣, 等. 垃圾土强度特性试验与双线强度包线研究[J]. 岩土工程学报, 2010, 32(10): 1499-1504. http://www.cgejournal.com/cn/article/id/8369

    SHI Jianyong, ZHU Jungao, LIU Rong, et al. Tests on shear strength behavior and envelop of double lines of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1499-1504. (in Chinese) http://www.cgejournal.com/cn/article/id/8369
    [33]
    张振营, 严立俊, 吴大志, 等. 新鲜生活垃圾抗剪强度参数变化规律研究[J]. 岩土工程学报, 2015, 37(3): 432-439. doi: 10.11779/CJGE201503006

    ZHANG Zhenying, YAN Lijun, WU Dazhi, et al. Experimental study on shear strength parameters of fresh municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 432-439. (in Chinese) doi: 10.11779/CJGE201503006
  • Cited by

    Periodical cited type(22)

    1. 何艳. 生态文明背景下滨海地区地下空间开发策略研究——以青岛国际资源配置中心为例. 未来城市设计与运营. 2025(03): 18-22 .
    2. 王新,姜弘,王文渊,孙志勇. 超大城市深层地下空间利用策略与技术挑战. 中国市政工程. 2025(02): 82-85+89+148 .
    3. 程锦山,管华栋,王观石,汪永超,林强. 单轴压缩下不同饱和度红砂岩横波特征研究. 有色金属科学与工程. 2024(01): 105-114 .
    4. 陈湘生,丁航,李方政,陈曦,高伟,王恒,王磊,陈汉青. 地铁双线隧道下穿既有车站冻结加固冻胀控制措施. 煤炭学报. 2024(01): 172-180 .
    5. 姚国圣,吴晓俊,苏鹏. 上海软土单层地下室大面积换撑基坑变形特性实测分析. 结构工程师. 2024(03): 179-186 .
    6. 孟旭,陈东霞,陈波,袁博. 滨海悬挂式止水帷幕深基坑非稳定渗流模型. 水资源与水工程学报. 2024(06): 149-156 .
    7. 李琳,李彬,刘东,韩笑. 深厚软土区深大异形基坑开挖对临近建构筑物的影响. 长江科学院院报. 2023(01): 140-145 .
    8. 罗嵩,陈思明,白伟,孙明祥,段小明. 近接运营线路超长深基坑分坑施工方案比选研究. 路基工程. 2023(02): 173-178 .
    9. 吕明超,李杰. 现代新城区毗邻楼宇地下空间联通开发利用分析. 住宅与房地产. 2023(11): 89-91 .
    10. 徐松,童立红,丁海滨,徐长节,吴智龙. 不同开挖顺序对基坑围护结构变形影响分析. 华东交通大学学报. 2023(04): 48-55 .
    11. 黄海明. 城市地下岩土工程的常见问题及措施分析. 居舍. 2023(23): 133-136 .
    12. 杨军,郭书强,方广涛,张立明,张坤勇. 某超深基坑涌水原因分析. 四川建材. 2023(10): 71-74+90 .
    13. 包小华,喻益亮,刘春讯,赵德博,陈湘生,崔宏志. 地震作用下深层地下空间多个结构相互作用机制及影响因素分析. 建筑结构学报. 2023(S2): 341-349 .
    14. 胡钟予,刘国买,姚志雄,吴贲. 软土深基坑施工对近接铁路桥变形影响分析. 福建理工大学学报. 2023(06): 523-530 .
    15. 韩辉,王锐松,倪芃芃. 深圳滨海大道改造工程超宽坑中坑降水与开挖响应实例分析. 隧道建设(中英文). 2023(12): 2026-2035 .
    16. 李程,贾战磊,徐成皓. 软土地区某阶梯式深基坑变形监测与数值模拟. 石家庄铁道大学学报(自然科学版). 2023(04): 61-68 .
    17. Peng Yu,Honghua Liu,Zhongsheng Wang,Jiani Fu,Hui Zhang,Jia Wang,Qi Yang. Development of urban underground space in coastal cities in China: A review. Deep Underground Science and Engineering. 2023(02): 148-172 .
    18. 易阳. 城市地下空间岩土工程问题及安全监测措施. 工程技术研究. 2022(02): 130-131 .
    19. 武华. 上下近接既有构筑物隧道悬臂掘进机施工技术研究. 铁道建筑技术. 2022(05): 153-158 .
    20. 杨洪杰,崔永高,孙建军. 上海第(9)层减压降水悬挂式隔水帷幕深度的设计方法. 建筑施工. 2022(08): 1758-1760 .
    21. 余以强,严鑫,肖旦强,詹伟,胡智. 交通软土地下空间开发工程地质适宜性评价指标体系研究. 科技资讯. 2022(24): 67-71 .
    22. 蔡家齐. 深基坑开挖对既有临近建筑物影响的数值模拟分析. 数据. 2021(03): 44-46 .

    Other cited types(9)

Catalog

    Article views (312) PDF downloads (103) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return