Citation: | ZHOU Xin-chao, MA Xiao-jing, LIAO Xiang-yun, QI Si-wei, LI Hong-yu. Numerical simulation of abrasive water jet impacting porous rock based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 731-739. DOI: 10.11779/CJGE202204016 |
[1] |
侯冰, 武安安, 常智, 等. 页岩油储层多甜点压裂裂缝垂向扩展试验研究[J]. 岩土工程学报, 2021, 43(7): 1322–1330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107024.htm
HOU Bing, WU An-an, CHANG Zhi, et al. Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1322–1330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107024.htm
|
[2] |
司鹄, 谢延明, 杨春和. 磨料水射流作用下岩石损伤场的数值模拟[J]. 岩土力学, 2011, 32(3): 935–940. doi: 10.3969/j.issn.1000-7598.2011.03.048
SI Hu, XIE Yan-ming, YANG Chun-he. Numerical simulation of rock damage field under abrasive water jet[J]. Rock and Soil Mechanics, 2011, 32(3): 935–940. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.048
|
[3] |
ZHANG T T, LIU Z Y, XIE Z X, et al. Numerical simulation of oil shale in situ mining using fluid-thermo-solid coupling[J]. Global Geology, 2020, 23(4): 247–254.
|
[4] |
夏彬伟, 刘浪, 彭子烨, 等. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(8): 1549–1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm
XIA Bin-wei, LIU Lang, PENG Zi-ye, et al. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549–1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm
|
[5] |
LIU W, BELL A, WANG Z M, et al. Evaluation of the slurry erosion resistance of the body materials of oil & gas drill bits with a modified abrasive waterjet[J]. Wear, 2020, 456/457: 203364. doi: 10.1016/j.wear.2020.203364
|
[6] |
QIANG C H, WANG F C, GUO C W. Study on cutting speed and energy utilization rate in processing stainless steel with abrasive water jet[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5/6): 1875–1886.
|
[7] |
陈国庆, 简大华, 陈宇航, 等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报, 2021, 43(4): 661–669. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104010.htm
CHEN Guo-qing, JIAN Da-hua, CHEN Yu-hang, et al. Shear creep characteristics of red sandstone after freeze-thaw with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 661–669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104010.htm
|
[8] |
程晓泽, 任福深, 方天成, 等. 粒子射流耦合冲击破岩实验[J]. 石油学报, 2018, 39(2): 232–239. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802012.htm
CHENG Xiao-ze, REN Fu-shen, FANG Tian-cheng, et al. Experiment of rock breaking by particle-jet coupling impact[J]. Acta Petrolei Sinica, 2018, 39(2): 232–239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802012.htm
|
[9] |
MA G W, WANG X J, REN F. Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 353–363. doi: 10.1016/j.ijrmms.2011.02.001
|
[10] |
POZZETTI G, PETERS B. A numerical approach for the evaluation of particle-induced erosion in an abrasive waterjet focusing tube[J]. Powder Technology, 2018, 333: 229–242. doi: 10.1016/j.powtec.2018.04.006
|
[11] |
黄中伟, 张世昆, 李根生, 等. 液氮磨料射流破碎高温花岗岩机理[J]. 石油学报, 2020, 41(5): 604–614. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005010.htm
HUANG Zhong-wei, ZHANG Shi-kun, LI Gen-sheng, et al. Breakage mechanism of high-temperature granite by abrasive liquid nitrogen jet[J]. Acta Petrolei Sinica, 2020, 41(5): 604–614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005010.htm
|
[12] |
庄欠伟, 袁一翔, 徐天明, 等. 射流联合盾构切削钢筋混凝土仿真与试验[J]. 岩土工程学报, 2020, 42(10): 1817–1824. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010009.htm
ZHUANG Qian-wei, YUAN Yi-xiang, XU Tian-ming, et al. Simulation and experiment on cutting reinforced concrete with jet combined shield method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1817–1824. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010009.htm
|
[13] |
穆朝民, 戎立帆. 磨料射流冲击岩石损伤机制的数值分析[J]. 岩土力学, 2014, 35(5): 1475–1481. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405038.htm
MU Chao-min, RONG Li-fan. Numerical simulation of damage mechanism of abrasive water jet impaction on rock[J]. Rock and Soil Mechanics, 2014, 35(5): 1475–1481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405038.htm
|
[14] |
刘勇, 李志飞, 魏建平, 等. 磨料空气射流破煤冲蚀模型研究[J]. 煤炭学报, 2020, 45(5): 1733–1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005019.htm
LIU Yong, LI Zhi-fei, WEI Jian-ping, et al. Erosion model of abrasive air jet used in coal breaking[J]. Journal of China Coal Society, 2020, 45(5): 1733–1742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005019.htm
|
[15] |
李世杰, 王艾伦, 刘向军, 等. 基于SPH算法土壤水射流冲击演化数值仿真研究[J]. 计算机仿真, 2019, 36(3): 243–247, 384. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201903049.htm
LI Shi-jie, WANG Ai-lun, LIU Xiang-jun, et al. Numerical simulation of soil water jet impact evolution based on SPH algorithm[J]. Computer Simulation, 2019, 36(3): 243–247, 384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201903049.htm
|
[16] |
赵健, 张贵才, 徐依吉, 等. 基于SPH方法粒子射流破岩数值模拟与实验研究[J]. 爆炸与冲击, 2017, 37(3): 479–486. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201703014.htm
ZHAO Jian, ZHANG Gui-cai, XU Yi-ji, et al. SPH-based numerical simulation and experimental study on rock breaking by particle impact[J]. Explosion and Shock Waves, 2017, 37(3): 479–486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201703014.htm
|
[17] |
LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview andRecent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. doi: 10.1007/s11831-010-9040-7
|
[18] |
HEUZÉ O. General form of the Mie-Grüneisen equation of state[J]. Comptes Rendus Mécanique, 2012, 340(10): 679-687. doi: 10.1016/j.crme.2012.10.044
|
[19] |
许传波. 页岩气藏地层特性分析及爆炸压裂适应性研究[D]. 东营: 中国石油大学(华东), 2014.
XU Chuan-bo. The Study of Shale Gas Reservoir Characteristics and Adaptability of Explosive Fracturing[D]. Dongying: China University of Petroleum (Huadong), 2014. (in Chinese)
|
[20] |
IQBAL M A, KUMAR V, MITTAL A K. Experimental and numerical studies on the drop impact resistance of prestressed concrete plates[J]. International Journal of Impact Engineering, 2019, 123: 98–117. doi: 10.1016/j.ijimpeng.2018.09.013
|
[21] |
SILIN D, PATZEK T. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 371(2): 336–360. doi: 10.1016/j.physa.2006.04.048
|
[22] |
饶登宇, 白冰. 孔隙尺度下三维多孔介质扩散迂曲度的SPH计算[J]. 岩土工程学报, 2020, 42(5): 961–967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005024.htm
RAO Deng-yu, BAI Bing. Pore-scale SPH simulations of diffusive tortuosity in 3-D porous media[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 961–967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005024.htm
|
[23] |
RAO D Y, BAI B. Study of the factors influencing diffusive tortuosity based on pore-scale SPH simulation of granular soil[J]. Transport in Porous Media, 2020, 132(2): 333–353. doi: 10.1007/s11242-020-01394-0
|
[24] |
BAI B, RAO D Y, XU T, et al. SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface[J]. International Journal of Heat and Mass Transfer, 2018, 117: 517–526. doi: 10.1016/j.ijheatmasstransfer.2017.10.004
|
[25] |
王冬欣. 基于Micro-CT图像的数字岩心孔隙级网络建模研究[D]. 长春: 吉林大学, 2015.
WANG Dong-xin. The Research of Digital Core Network Extraction Based on Micro-CT Images[D]. Changchun: Jilin University, 2015. (in Chinese)
|
[26] |
张鹏伟, 胡黎明, Jay N Meegoda, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1): 37–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001008.htm
ZHANG Peng-wei, HU Li-ming, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001008.htm
|
[27] |
王金波. 岩石孔隙结构三维重构及微细观渗流的数值模拟研究[D]. 北京: 中国矿业大学(北京), 2014.
WANG Jin-bo. 3d Reconstruction of Porous Rock and Numerical Simulations of Fluid Flow at Mesoscale Levels[D]. Beijing: China University of Mining & Technology, Beijing, 2014. (in Chinese)
|
[28] |
李井慧. 磨料水射流切割大理石的试验及仿真研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.
LI Jing-hui. Research on Simulation and Experiment of AWJ Cutting Marble[D]. Harbin: Harbin University of Science and Technology, 2015. (in Chinese)
|
[29] |
林晓东, 卢义玉, 汤积仁, 等. 基于SPH-FEM耦合算法的磨料水射流破岩数值模拟[J]. 振动与冲击, 2014, 33(18): 170–176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202116017.htm
LIN Xiao-dong, LU Yi-yu, TANG Ji-ren, et al. Numerical simulation of abrasive water jet breaking rock with SPH-FEM coupling algorithm[J]. Journal of Vibration and Shock, 2014, 33(18): 170–176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202116017.htm
|
[30] |
原油和石油产品密度在638 kg/m3到1074 kg/m3范围内的烃压缩系数: GB/T 21450—2008[S]. 2008.
Crude Petroleum and Petroleum Products-Compressibility Factors for Hydrocarbons in the Range 638 kg/m3 to 1074 kg/m3: GB/T 21450—2008[S]. 2008. (in Chinese)
|
1. |
王云龙,邢兰昌,魏伟,韩维峰,朱作飞,苏丕波. 基于多场耦合数值模型的含水合物多孔介质声学特性:骨架颗粒排列和形状的影响. 新能源进展. 2025(01): 7-16 .
![]() | |
2. |
叶阳升,蔡德钩,安再展,魏少伟,闫宏业,姚建平. 基于机-土耦合模型的铁路路基连续压实质量控制方法. 铁道学报. 2024(03): 1-10 .
![]() | |
3. |
张涛,吴健,魏骁,杨仲轩. 颗粒表面粗糙度对材料小应变动力特性的影响. 岩土工程学报. 2024(08): 1783-1790 .
![]() | |
4. |
袁丽,崔振东,张忠良. Stoke固定-自由型共振柱实验系统测试原理及标定方法. 实验技术与管理. 2023(06): 68-73+89 .
![]() |