• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Xin-chao, MA Xiao-jing, LIAO Xiang-yun, QI Si-wei, LI Hong-yu. Numerical simulation of abrasive water jet impacting porous rock based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 731-739. DOI: 10.11779/CJGE202204016
Citation: ZHOU Xin-chao, MA Xiao-jing, LIAO Xiang-yun, QI Si-wei, LI Hong-yu. Numerical simulation of abrasive water jet impacting porous rock based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 731-739. DOI: 10.11779/CJGE202204016

Numerical simulation of abrasive water jet impacting porous rock based on SPH method

More Information
  • Received Date: June 06, 2021
  • Available Online: September 22, 2022
  • Shale contains pores. The abrasive water jet technology is used to extract oil and gas resources inside the shale, and the impact process is affected by the pores. For the damage process of abrasive water jet impacting the pore-containing rock, according to the basic principle of smoothed particle hydrodynamics (SPH) method, the abrasive water jet and the pore-containing rock are discretized into a series of particles, and a dynamic model for the abrasive water jet impacting the pore-containing rock is established by the constitutive relationship of NULL and H-J-C to describe the mechanical properties of abrasive water jets and rock respectively. The effectiveness of the established model is verified and analyzed by simulating the impact of abrasive water jet on the rock and comparing with the existing research results. On this basis, the dynamic damage process of the abrasive water jet impacting the pore-bearing rock is simulated, and the effects of pore characteristics and jet parameters on the damage degree of rock are also analyzed. The simulated results show that the velocity of abrasive water jet and porosity of rock have significant effects on the breaking process of the rock, while the size and distribution of the pores can affect the breaking shape of the rock, and other factors have different influences on the damage degree of rock. The research conclusion can provide theoretical support for improving the rock-breaking efficiency of water jet in engineering.
  • [1]
    侯冰, 武安安, 常智, 等. 页岩油储层多甜点压裂裂缝垂向扩展试验研究[J]. 岩土工程学报, 2021, 43(7): 1322–1330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107024.htm

    HOU Bing, WU An-an, CHANG Zhi, et al. Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1322–1330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107024.htm
    [2]
    司鹄, 谢延明, 杨春和. 磨料水射流作用下岩石损伤场的数值模拟[J]. 岩土力学, 2011, 32(3): 935–940. doi: 10.3969/j.issn.1000-7598.2011.03.048

    SI Hu, XIE Yan-ming, YANG Chun-he. Numerical simulation of rock damage field under abrasive water jet[J]. Rock and Soil Mechanics, 2011, 32(3): 935–940. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.048
    [3]
    ZHANG T T, LIU Z Y, XIE Z X, et al. Numerical simulation of oil shale in situ mining using fluid-thermo-solid coupling[J]. Global Geology, 2020, 23(4): 247–254.
    [4]
    夏彬伟, 刘浪, 彭子烨, 等. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(8): 1549–1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm

    XIA Bin-wei, LIU Lang, PENG Zi-ye, et al. Multi-fracture propagation and deflection laws of horizontal wells in tight sandstone[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1549–1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008027.htm
    [5]
    LIU W, BELL A, WANG Z M, et al. Evaluation of the slurry erosion resistance of the body materials of oil & gas drill bits with a modified abrasive waterjet[J]. Wear, 2020, 456/457: 203364. doi: 10.1016/j.wear.2020.203364
    [6]
    QIANG C H, WANG F C, GUO C W. Study on cutting speed and energy utilization rate in processing stainless steel with abrasive water jet[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5/6): 1875–1886.
    [7]
    陈国庆, 简大华, 陈宇航, 等. 不同含水率冻融后红砂岩剪切蠕变特性[J]. 岩土工程学报, 2021, 43(4): 661–669. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104010.htm

    CHEN Guo-qing, JIAN Da-hua, CHEN Yu-hang, et al. Shear creep characteristics of red sandstone after freeze-thaw with different water contents[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 661–669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202104010.htm
    [8]
    程晓泽, 任福深, 方天成, 等. 粒子射流耦合冲击破岩实验[J]. 石油学报, 2018, 39(2): 232–239. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802012.htm

    CHENG Xiao-ze, REN Fu-shen, FANG Tian-cheng, et al. Experiment of rock breaking by particle-jet coupling impact[J]. Acta Petrolei Sinica, 2018, 39(2): 232–239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201802012.htm
    [9]
    MA G W, WANG X J, REN F. Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 353–363. doi: 10.1016/j.ijrmms.2011.02.001
    [10]
    POZZETTI G, PETERS B. A numerical approach for the evaluation of particle-induced erosion in an abrasive waterjet focusing tube[J]. Powder Technology, 2018, 333: 229–242. doi: 10.1016/j.powtec.2018.04.006
    [11]
    黄中伟, 张世昆, 李根生, 等. 液氮磨料射流破碎高温花岗岩机理[J]. 石油学报, 2020, 41(5): 604–614. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005010.htm

    HUANG Zhong-wei, ZHANG Shi-kun, LI Gen-sheng, et al. Breakage mechanism of high-temperature granite by abrasive liquid nitrogen jet[J]. Acta Petrolei Sinica, 2020, 41(5): 604–614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005010.htm
    [12]
    庄欠伟, 袁一翔, 徐天明, 等. 射流联合盾构切削钢筋混凝土仿真与试验[J]. 岩土工程学报, 2020, 42(10): 1817–1824. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010009.htm

    ZHUANG Qian-wei, YUAN Yi-xiang, XU Tian-ming, et al. Simulation and experiment on cutting reinforced concrete with jet combined shield method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1817–1824. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010009.htm
    [13]
    穆朝民, 戎立帆. 磨料射流冲击岩石损伤机制的数值分析[J]. 岩土力学, 2014, 35(5): 1475–1481. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405038.htm

    MU Chao-min, RONG Li-fan. Numerical simulation of damage mechanism of abrasive water jet impaction on rock[J]. Rock and Soil Mechanics, 2014, 35(5): 1475–1481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405038.htm
    [14]
    刘勇, 李志飞, 魏建平, 等. 磨料空气射流破煤冲蚀模型研究[J]. 煤炭学报, 2020, 45(5): 1733–1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005019.htm

    LIU Yong, LI Zhi-fei, WEI Jian-ping, et al. Erosion model of abrasive air jet used in coal breaking[J]. Journal of China Coal Society, 2020, 45(5): 1733–1742. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005019.htm
    [15]
    李世杰, 王艾伦, 刘向军, 等. 基于SPH算法土壤水射流冲击演化数值仿真研究[J]. 计算机仿真, 2019, 36(3): 243–247, 384. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201903049.htm

    LI Shi-jie, WANG Ai-lun, LIU Xiang-jun, et al. Numerical simulation of soil water jet impact evolution based on SPH algorithm[J]. Computer Simulation, 2019, 36(3): 243–247, 384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ201903049.htm
    [16]
    赵健, 张贵才, 徐依吉, 等. 基于SPH方法粒子射流破岩数值模拟与实验研究[J]. 爆炸与冲击, 2017, 37(3): 479–486. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201703014.htm

    ZHAO Jian, ZHANG Gui-cai, XU Yi-ji, et al. SPH-based numerical simulation and experimental study on rock breaking by particle impact[J]. Explosion and Shock Waves, 2017, 37(3): 479–486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201703014.htm
    [17]
    LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview andRecent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. doi: 10.1007/s11831-010-9040-7
    [18]
    HEUZÉ O. General form of the Mie-Grüneisen equation of state[J]. Comptes Rendus Mécanique, 2012, 340(10): 679-687. doi: 10.1016/j.crme.2012.10.044
    [19]
    许传波. 页岩气藏地层特性分析及爆炸压裂适应性研究[D]. 东营: 中国石油大学(华东), 2014.

    XU Chuan-bo. The Study of Shale Gas Reservoir Characteristics and Adaptability of Explosive Fracturing[D]. Dongying: China University of Petroleum (Huadong), 2014. (in Chinese)
    [20]
    IQBAL M A, KUMAR V, MITTAL A K. Experimental and numerical studies on the drop impact resistance of prestressed concrete plates[J]. International Journal of Impact Engineering, 2019, 123: 98–117. doi: 10.1016/j.ijimpeng.2018.09.013
    [21]
    SILIN D, PATZEK T. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 371(2): 336–360. doi: 10.1016/j.physa.2006.04.048
    [22]
    饶登宇, 白冰. 孔隙尺度下三维多孔介质扩散迂曲度的SPH计算[J]. 岩土工程学报, 2020, 42(5): 961–967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005024.htm

    RAO Deng-yu, BAI Bing. Pore-scale SPH simulations of diffusive tortuosity in 3-D porous media[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 961–967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005024.htm
    [23]
    RAO D Y, BAI B. Study of the factors influencing diffusive tortuosity based on pore-scale SPH simulation of granular soil[J]. Transport in Porous Media, 2020, 132(2): 333–353. doi: 10.1007/s11242-020-01394-0
    [24]
    BAI B, RAO D Y, XU T, et al. SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface[J]. International Journal of Heat and Mass Transfer, 2018, 117: 517–526. doi: 10.1016/j.ijheatmasstransfer.2017.10.004
    [25]
    王冬欣. 基于Micro-CT图像的数字岩心孔隙级网络建模研究[D]. 长春: 吉林大学, 2015.

    WANG Dong-xin. The Research of Digital Core Network Extraction Based on Micro-CT Images[D]. Changchun: Jilin University, 2015. (in Chinese)
    [26]
    张鹏伟, 胡黎明, Jay N Meegoda, 等. 基于岩土介质三维孔隙结构的两相流模型[J]. 岩土工程学报, 2020, 42(1): 37–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001008.htm

    ZHANG Peng-wei, HU Li-ming, MEEGODA J N, et al. Two-phase flow model based on 3D pore structure of geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 37–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001008.htm
    [27]
    王金波. 岩石孔隙结构三维重构及微细观渗流的数值模拟研究[D]. 北京: 中国矿业大学(北京), 2014.

    WANG Jin-bo. 3d Reconstruction of Porous Rock and Numerical Simulations of Fluid Flow at Mesoscale Levels[D]. Beijing: China University of Mining & Technology, Beijing, 2014. (in Chinese)
    [28]
    李井慧. 磨料水射流切割大理石的试验及仿真研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.

    LI Jing-hui. Research on Simulation and Experiment of AWJ Cutting Marble[D]. Harbin: Harbin University of Science and Technology, 2015. (in Chinese)
    [29]
    林晓东, 卢义玉, 汤积仁, 等. 基于SPH-FEM耦合算法的磨料水射流破岩数值模拟[J]. 振动与冲击, 2014, 33(18): 170–176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202116017.htm

    LIN Xiao-dong, LU Yi-yu, TANG Ji-ren, et al. Numerical simulation of abrasive water jet breaking rock with SPH-FEM coupling algorithm[J]. Journal of Vibration and Shock, 2014, 33(18): 170–176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202116017.htm
    [30]
    原油和石油产品密度在638 kg/m3到1074 kg/m3范围内的烃压缩系数: GB/T 21450—2008[S]. 2008.

    Crude Petroleum and Petroleum Products-Compressibility Factors for Hydrocarbons in the Range 638 kg/m3 to 1074 kg/m3: GB/T 21450—2008[S]. 2008. (in Chinese)
  • Cited by

    Periodical cited type(4)

    1. 王云龙,邢兰昌,魏伟,韩维峰,朱作飞,苏丕波. 基于多场耦合数值模型的含水合物多孔介质声学特性:骨架颗粒排列和形状的影响. 新能源进展. 2025(01): 7-16 .
    2. 叶阳升,蔡德钩,安再展,魏少伟,闫宏业,姚建平. 基于机-土耦合模型的铁路路基连续压实质量控制方法. 铁道学报. 2024(03): 1-10 .
    3. 张涛,吴健,魏骁,杨仲轩. 颗粒表面粗糙度对材料小应变动力特性的影响. 岩土工程学报. 2024(08): 1783-1790 . 本站查看
    4. 袁丽,崔振东,张忠良. Stoke固定-自由型共振柱实验系统测试原理及标定方法. 实验技术与管理. 2023(06): 68-73+89 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return