• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, HU Yuan. Experimental study on thermal moisture migration of unsaturated loess humidified by spherical steam source[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 687-695. DOI: 10.11779/CJGE202204011
Citation: LI Jian-dong, WANG Xu, ZHANG Yan-jie, JIANG Dai-jun, LIU De-ren, HU Yuan. Experimental study on thermal moisture migration of unsaturated loess humidified by spherical steam source[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 687-695. DOI: 10.11779/CJGE202204011

Experimental study on thermal moisture migration of unsaturated loess humidified by spherical steam source

More Information
  • Received Date: December 01, 2020
  • Available Online: September 22, 2022
  • The water-vapor-thermal coupling transport in unsaturated soils is a complex process affected by multiple factors. The experiment is designed to use the remolding unsaturated loess filling model, and the high-temperature steam with a certain pressure is ventilated in order to study the law of thermal mass migration in remolded unsaturated loess under the action of vapor pressure gradient, temperature gradient and water content gradient. Based on the boundary conditions of the model tests, a set of special solutions to the governing equation for heat-wet transport in unsaturated loess under humidification of spherical steam source are obtained. The results show that when the spherical steam sources diffuse in unsaturated loess, the migration range of water and temperature is similar to an ellipsoid. When the water vapor moves along the radial direction, the vapor pressure gradually dissipates, the migration rate decreases, and the temperature conduction rate decreases. When the vapor pressure is large, the humidification rate, range and degree will increase. In the effective humidification range, the moisture content of soils varies between 11% and 17%, which is close to the optimal moisture content of the soils, and the humidification effect is better. The heat transfer of high-temperature steam in the soils includes the heat transfer caused by the high-temperature steam and temperature gradient. The effective humidification range is mainly decided by the high-temperature steam heat transfer, and the temperature migration rate belongs to the rapid migration stage. The temperature migration outside the effective humidification range is mainly decided by the heat transfer caused by the temperature gradient, which belongs to the slow migration stage. The comparison between the measured and calculated values shows that the algebraic explicit analytical special solution can better reflect the variation law of soil temperature and moisture content in the experiment. The research results can provide a theoretical reference for the new technology of water-heat coupled migration and vapor humidification in unsaturated loess.
  • [1]
    王铁行, 李宁, 谢定义. 土体水热力耦合问题研究意义、现状及建议[J]. 岩土力学, 2005, 26(3): 488–493. doi: 10.3969/j.issn.1000-7598.2005.03.031

    WANG Tie-hang, LI Ning, XIE Ding-yi. Necessity and means in research on soil coupled heat-moisture-stress issues[J]. Rock and Soil Mechanics, 2005, 26(3): 488–493. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.03.031
    [2]
    刘峰, 朱庆杰, 程雨, 等. 多孔介质热流固耦合问题及研究进展[J]. 岩土力学, 2009, 30(增刊2): 254–256. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2056.htm

    LIU Feng, ZHU Qing-jie, CHENG Yu, et al. Problems of fluid-solid-heat coupling for porous media and its research progress[J]. Rock and Soil Mechanics, 2009, 30(S2): 254–256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2056.htm
    [3]
    陈正汉, 郭楠. 非饱和土与特殊土力学及工程应用研究的新进展[J]. 岩土力学, 2019, 40(1): 1–54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm

    CHEN Zheng-han, GUO Nan. New developments of mechanics and application for unsaturated soils and special soils[J]. Rock and Soil Mechanics, 2019, 40(1): 1–54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901002.htm
    [4]
    陈盼, 韦昌富, 魏厚振, 等. 残留含气量影响的非饱和多孔介质流动过程[J]. 岩石力学与工程学报, 2013, 32(7): 1426–1433. doi: 10.3969/j.issn.1000-6915.2013.07.018

    CHEN Pan, WEI Chang-fu, WEI Hou-zhen, et al. Effect of residual air entrapment on unsaturated flow in porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1426–1433. (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.07.018
    [5]
    NOVAK M D. Importance of soil heating, liquid water loss, and vapor flow enhancement for evaporation[J]. Water Resources Research, 2016, 52(10): 8023–8038. doi: 10.1002/2016WR018874
    [6]
    陈正汉, 秦冰. 缓冲/回填材料的热-水-力耦合特性及其应用[M]. 北京: 科学出版社, 2017.

    CHEN Zheng-han, QIN Bing. Thermo-Hyrdo-Mechancal Coupling Characteristics of Buffer/Backfilling Material and Its Application[M]. Beijing: Science Press, 2017. (in Chinese)
    [7]
    刘广林, 徐进良, 苗政. 地热有机朗肯循环系统混合工质优化[J]. 工程热物理学报, 2015, 36(12): 2716–2720. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201512038.htm

    LIU Guang-lin, XU Jin-liang, MIAO Zheng. Optimal of mixtures working fluids for geothermal organic Rankine cycle system[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2716–2720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201512038.htm
    [8]
    刘泉声, 崔先泽, 张程远. 多孔介质中悬浮颗粒迁移–沉积特性研究进展[J]. 岩石力学与工程学报, 2015, 34(12): 2410–2427. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201512005.htm

    LIU Quan-sheng, CUI Xian-ze, ZHANG Cheng-yuan. Research advances in the characterization of transportation and deposition of suspended particles in porous media[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2410–2427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201512005.htm
    [9]
    赵阳升, 杨栋, 冯增朝, 等. 多孔介质多场耦合作用理论及其在资源与能源工程中的应用[J]. 岩石力学与工程学报, 2008, 27(7): 1321–1328. doi: 10.3321/j.issn:1000-6915.2008.07.004

    ZHAO Yang-sheng, YANG Dong, FENG Zeng-chao, et al. Multi-field coupling theory of porous media and its applications to resources and energy engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1321–1328. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.07.004
    [10]
    沈荣开, 王康, 张瑜芳, 等. 水肥耦合条件下作物产量、水分利用和根系吸氮的试验研究[J]. 农业工程学报, 2001, 17(5): 35–38. doi: 10.3321/j.issn:1002-6819.2001.05.009

    SHEN Rong-kai, WANG Kang, ZHANG Yu-fang, et al. Field test and study on yield, water use and N uptake under varied irrigation and fertilizer in crops[J]. Transactions of the Chinese Society of Agricultural Engineering, 2001, 17(5): 35–38. (in Chinese) doi: 10.3321/j.issn:1002-6819.2001.05.009
    [11]
    路建国, 张明义, 张熙胤, 等. 冻土水热力耦合研究现状及进展[J]. 冰川冻土, 2017, 39(1): 102–111. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201701013.htm

    LU Jian-guo, ZHANG Ming-yi, ZHANG Xi-yin, et al. Review of the coupled hydro-thermo-mechanical interaction of frozen soil[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 102–111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201701013.htm
    [12]
    蔡国庆, 郭艳鑫, 李舰, 等. 热-水-力耦合作用下非饱和土变形特性的弹塑性模拟[J]. 岩土力学, 2017, 38(4): 1060–1068. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704018.htm

    CAI Guo-qing, GUO Yan-xin, LI Jian, et al. Elastoplastic modeling of volume change behaviour of unsaturated soils under thermo-hydro-mechanical coupling conditions[J]. Rock and Soil Mechanics, 2017, 38(4): 1060–1068. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704018.htm
    [13]
    闫婷婷, 杜震宇. 日光温室土壤-空气换热器周围土壤中热湿迁移规律研究[J]. 工程热物理学报, 2018, 39(2): 434–441. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201802033.htm

    YAN Ting-ting, DU Zhen-yu. Study on the heat and moisture transfer principles of soil fields surrounding the soil-air heat exchanger in solar greenhouse[J]. Journal of Engineering Thermophysics, 2018, 39(2): 434–441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201802033.htm
    [14]
    刘祎, 蔡国庆, 李舰, 等. 非饱和土热-水-力全耦合本构模型及其验证[J]. 岩土工程学报, 2021, 43(3): 547–555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103022.htm

    LIU Yi, CAI Guo-qing, LI Jian, et al. A fully coupled thermo–hydro–mechanical constitutive model for unsaturated soils and its verification[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 547–555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103022.htm
    [15]
    BOUYOUCOS G J. Effect of Temperature on movement of water vapour and capillary water vapour in soil[J]. Journal of Agriculture Research, 1915, 5(4): 141–172.
    [16]
    PHILIP J R, DE VRIES D A. Moisture movement in porous materials under temperature gradients[J]. Transactions, American Geophysical Union, 1957, 38(2): 222–231. doi: 10.1029/TR038i002p00222
    [17]
    THOMAS H R, HE Y. Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil[J]. Géotechnique, 1995, 45(4): 677–689. doi: 10.1680/geot.1995.45.4.677
    [18]
    TULI A, HOPMANS J W, ROLSTON D E, et al. Comparison of air and water permeability between disturbed and undisturbed soils[J]. Soil Science Society of America Journal, 2005, 69(5): 1361–1371. doi: 10.2136/sssaj2004.0332
    [19]
    ORCHISTON H D. Adsorption of water vapor[J]. Soil Science, 1954, 78(6): 463–480. doi: 10.1097/00010694-195412000-00006
    [20]
    GRISMER M E. Water vapor adsorption kinetics and isothermal infiltration[J]. Soil Science, 1988, 146(5): 297–302. doi: 10.1097/00010694-198811000-00001
    [21]
    KOSMAS C, MARATHIANOU M, GERONTIDIS S, et al. Parameters affecting water vapor adsorption by the soil under semi-arid climatic conditions[J]. Agricultural Water Management, 2001, 48(1): 61–78. doi: 10.1016/S0378-3774(00)00113-X
    [22]
    秦冰, 陈正汉, 方振东, 等. 基于混合物理论的非饱和土的热-水-力耦合分析模型Ⅰ[J]. 应用数学和力学, 2010, 31(12): 1476–1488. doi: 10.3879/j.issn.1000-0887.2010.12.008

    QIN Bing, CHEN Zheng-han, FANG Zhen-dong, et al. Analysis of coupled thermo-hydromechanical behavior of unsaturated soils based on theory of mixtures Ⅰ[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1476–1488. (in Chinese) doi: 10.3879/j.issn.1000-0887.2010.12.008
    [23]
    王磊, 赵阳升, 杨栋. 注水蒸汽原位热解油页岩细观特征研究[J]. 岩石力学与工程学报, 2020, 39(8): 1634–1647. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008012.htm

    WANG Lei, ZHAO Yang-sheng, YANG Dong. Investigation on meso-characteristics of in situ pyrolysis of oil shale by injecting steam[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1634–1647. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008012.htm
    [24]
    王铁行, 贺再球, 赵树德, 等. 非饱和土体气态水迁移试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3271–3275. doi: 10.3321/j.issn:1000-6915.2005.18.012

    WANG Tie-hang, HE Zai-qiu, ZHAO Shu-de, et al. Experimental study on vaporous water transference in loess and sandy soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3271–3275. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.18.012
    [25]
    王铁行, 陆海红. 温度影响下的非饱和黄土水分迁移问题探讨[J]. 岩土力学, 2004, 25(7): 1081–1084. doi: 10.3969/j.issn.1000-7598.2004.07.016

    WANG Tie-hang, LU Hai-hong. Moisture migration in unsaturated loess considering temperature effect[J]. Rock and Soil Mechanics, 2004, 25(7): 1081–1084. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.07.016
    [26]
    曾亦键, 万力, 苏中波, 等. 浅层包气带水汽昼夜运移规律及其数值模拟研究[J]. 地学前缘, 2008, 15(5): 330–343. doi: 10.3321/j.issn:1005-2321.2008.05.033

    ZENG Yi-jian, WAN Li, SU Zhong-bo, et al. The diurnal pattern of soil water fluxes in subsurface zone and its simulation analysis[J]. Earth Science Frontiers, 2008, 15(5): 330–343. (in Chinese) doi: 10.3321/j.issn:1005-2321.2008.05.033
    [27]
    陈佩佩, 白冰. 内含圆柱域热源的非饱和土介质水热耦合作用的SPH数值模拟[J]. 岩土工程学报, 2015, 37(6): 1025–1030. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506009.htm

    CHEN Pei-pei, BAI Bing. Numerical simulation of moisture-heat coupling in porous media with circular heat source by SPH method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1025–1030. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506009.htm
    [28]
    杨光昌, 白冰. 基于颗粒物质热动力学理论的非饱和土热水力耦合模型研究[J]. 岩土工程学报, 2019, 41(9): 1688–1697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909014.htm

    YANG Guang-chang, BAI Bing. A thermohydro-mechanical coupled model for unsaturated soils based on thermodynamic theory of granular matter[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1688–1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909014.htm
    [29]
    BAI B, XU T, NIE Q K, et al. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119573. doi: 10.1016/j.ijheatmasstransfer.2020.119573
    [30]
    BAI B, YANG G C, LI T, et al. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials[J]. Mechanics of Materials, 2019, 139: 103180. doi: 10.1016/j.mechmat.2019.103180
    [31]
    YANG Dai-quan, SHEN Zhu-jiang. Modelling fully coupled moisture, air and heat transfer in unsaturated soils[J]. 岩土工程学报, 2000, 22(3): 357–361. doi: 10.3321/j.issn:1000-4548.2000.03.020

    YANG Dai-quan, SHEN Zhu-jiang. Modelling fully coupled moisture, air and heat transfer in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 357–361. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.03.020
    [32]
    李建东, 王旭, 张延杰, 等. 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学, 2021, 42(1): 186–192. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101021.htm

    LI Jian-dong, WANG Xu, ZHANG Yan-jie, et al. Study of thermal moisture migration of unsaturated loess with water vapor[J]. Rock and Soil Mechanics, 2021, 42(1): 186–192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101021.htm
    [33]
    何陇霞, 王旭, 张延杰, 等. 非饱和黄土水蒸气扩散规律模型试验研究[J]. 工程地质学报, 2018, 26(5): 1265–1271. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805019.htm

    HE Long-xia, WANG Xu, ZHANG Yan-jie, et al. Model test study on steam diffusion law of unsaturated loess[J]. Journal of Engineering Geology, 2018, 26(5): 1265–1271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805019.htm
    [34]
    王补宣. 多孔介质的传热传质[J]. 清华大学学报(自然科学版), 1992, 32(增刊1): 5–l2. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB906.021.htm

    WANG Bu-xuan. Heat and mass transfer in porous media[J]. Journal of Tsinghua University (Natural Science Edition), 1992, 2(S1): 5–l2. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB906.021.htm
    [35]
    WANG B X, HAN L Z, YU W P. A method for measuring simultaneously the heat and mass transport properties of moist porous media[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 93–98. doi: 10.1016/0894-1777(88)90052-0
    [36]
    蔡睿贤, 张冬阳. 两相非定常流的一些显式解析解[J]. 机械工程学报, 2001, 37(9): 1–3, 8. doi: 10.3321/j.issn:0577-6686.2001.09.001

    CAI Rui-xian, ZHANG Dong-yang. Some explicit analytical solutions of unsteady two phase flow[J]. Chinese Journal of Mechanical Engineering, 2001, 37(9): 1–3, 8. (in Chinese) doi: 10.3321/j.issn:0577-6686.2001.09.001
    [37]
    蔡睿贤, 张娜. 含湿毛细多孔介质传热与传质基本方程的一组代数显式解析解[J]. 机械工程学报, 2003, 39(6): 1–3. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200306000.htm

    CAI Rui-xian, ZHANG Na. Algebraically explicit analytical solution for heat and mass transfer in wet porous media[J]. Chinese Journal of Mechanical Engineering, 2003, 39(6): 1–3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200306000.htm

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return