Citation: | LI Wu-gang, YANG Qing, LIU Wen-hua, YANG Gang, SUN Xiu-li. Structured quantitative characterization and elastoplastic constitutive model of clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 678-686. DOI: 10.11779/CJGE202204010 |
[1] |
ROSCOE K H, BURLAND J B. On the Generalized Stress-Strain Behaviour of Wet Clay[M]. Cambridge: Cambridge University Press, 1968: 535–609.
|
[2] |
BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329–378. doi: 10.1680/geot.1990.40.3.329
|
[3] |
BURGHIGNOLI A, MILIZIANO S, SOCCODATO F M. Cementation effects in two lacustrine clayey soils[J]. Geotechnical and Geological Engineering, 2010, 28(6): 815–833. doi: 10.1007/s10706-010-9343-3
|
[4] |
COTECCHIA F, CAFARO F, ARESTA B. Structure and mechanical response of sub-Apennine Blue Clays in relation to their geological and recent loading history[J]. Géotechnique, 2007, 57(2): 167–180. doi: 10.1680/geot.2007.57.2.167
|
[5] |
HORPIBULSUK S, MIURA N, BERGADO D T. Undrained shear behavior of cement admixed clay at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1096–1105. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1096)
|
[6] |
孔令伟, 吕海波, 汪稔, 等. 某防波堤下卧层软土的工程特性状态分析[J]. 岩土工程学报, 2004, 26(4): 454–458. doi: 10.3321/j.issn:1000-4548.2004.04.005
KONG Ling-wei, LU Hai-bo, WANG Ren, et al. Analysis on engineering property of underlying soft soil strat um of a breakwater[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 454–458. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.005
|
[7] |
LIU M D, CARTER J P. A structured cam clay model[J]. Canadian Geotechnical Journal, 2002, 39(6): 1313–1332. doi: 10.1139/t02-069
|
[8] |
SUEBSUK J, HORPIBULSUK S, LIU M D. Modified structured cam clay: a generalised critical state model for destructured, naturally structured and artificially structured clays[J]. Computers and Geotechnics, 2010, 37(7/8): 956–968.
|
[9] |
CHOWDHURY B, HAQUE A, MUHUNTHAN B. New pressure–void ratio relationship for structured soils in the virgin compression range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(8): 06014009. doi: 10.1061/(ASCE)GT.1943-5606.0001153
|
[10] |
王立忠, 丁利, 陈云敏, 等. 结构性软土压缩特性研究[J]. 土木工程学报, 2004, 37(4): 46–53. doi: 10.3321/j.issn:1000-131X.2004.04.010
WANG Li-zhong, DING Li, CHEN Yun-min, et al. Study on compressibility of structured soft soil[J]. China Civil Engineering Journal, 2004, 37(4): 46–53. (in Chinese) doi: 10.3321/j.issn:1000-131X.2004.04.010
|
[11] |
陈铁林, 周成, 沈珠江. 结构性黏土压缩和剪切特性试验研究[J]. 岩土工程学报, 2004, 26(1): 31–35. doi: 10.3321/j.issn:1000-4548.2004.01.005
CHEN Tie-lin, ZHOU Cheng, SHEN Zhu-jiang. Compression and shear test of structured clay[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 31–35. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.01.005
|
[12] |
殷杰. 土结构性对天然软黏土压缩特性的影响[J]. 岩土力学, 2012, 33(1): 48–52. doi: 10.3969/j.issn.1000-7598.2012.01.008
YIN Jie. Effect of soil structure on compression behavior of natural soft clays[J]. Rock and Soil Mechanics, 2012, 33(1): 48–52. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.01.008
|
[13] |
HUANG Y H, ZHU W, QIAN X D, et al. Change of mechanical behavior between solidified and remolded solidified dredged materials[J]. Engineering Geology, 2011, 119(3/4): 112–119.
|
[14] |
AMOROSI A, RAMPELLO S. An experimental investigation into the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153–166. doi: 10.1680/geot.2007.57.2.153
|
[15] |
BO M W, ARULRAJAH A, SUKMAK P, et al. Mineralogy and geotechnical properties of Singapore marine clay at Changi[J]. Soils and Foundations, 2015, 55(3): 600–613. doi: 10.1016/j.sandf.2015.04.011
|
[16] |
沈珠江, 刘恩龙, 陈铁林. 岩土二元介质模型的一般应力应变关系[J]. 岩土工程学报, 2005, 27(5): 489–494. doi: 10.3321/j.issn:1000-4548.2005.05.001
SHEN Zhu-jiang, LIU En-long, CHEN Tie-lin. Generalized stress-strain relationship of binary medium model for geological materials[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 489–494. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.05.001
|
[17] |
蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报, 2013, 35(6): 1134–1139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm
JIANG Ming-jing, LIU Jing-de, SUN Yu-gang. Constitutive model for structured soils based on microscopic damage law[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1134–1139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm
|
[18] |
刘恩龙, 沈珠江. 结构性土的二元介质模型[J]. 水利学报, 2005, 36(4): 391–395. doi: 10.3321/j.issn:0559-9350.2005.04.002
LIU En-long, SHEN Zhu-jiang. Binary medium model for structured soils[J]. Journal of Hydraulic Engineering, 2005, 36(4): 391–395. (in Chinese) doi: 10.3321/j.issn:0559-9350.2005.04.002
|
[19] |
谢定义, 齐吉琳, 张振中. 考虑土结构性的本构关系[J]. 土木工程学报, 2000, 33(4): 35–41. doi: 10.3321/j.issn:1000-131X.2000.04.008
XIE Ding-yi, QI Ji-lin, ZHANG Zhen-zhong. A constitutive laws considering soil structural properties[J]. China Civil Engineering Journal, 2000, 33(4): 35–41. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.04.008
|
[20] |
ROUAINIA M, MUIR WOOD D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153–164. doi: 10.1680/geot.2000.50.2.153
|
[21] |
祝恩阳, 姚仰平. 结构性土UH模型[J]. 岩土力学, 2015, 36(11): 3101–3110, 3228. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511009.htm
ZHU En-yang, YAO Yang-ping. A UH constitutive model for structured soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3101–3110, 3228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511009.htm
|
[22] |
祝恩阳, 李晓强. 胶结结构性土统一硬化模型[J]. 岩土力学, 2018, 39(1): 112–122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801015.htm
ZHU En-yang, LI Xiao-qiang. A unified hardening model considering bonding in structured soils[J]. Rock and Soil Mechanics, 2018, 39(1): 112–122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801015.htm
|
[23] |
姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193–217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193–217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
|
[24] |
YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451–469. doi: 10.1680/geot.2007.00029
|
[25] |
姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135–2151. doi: 10.3321/j.issn:1000-6915.2009.10.023
YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135–2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
|
[26] |
DESAI C S, MA Y Z. Modelling of joints and interfaces using the disturbed-state concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(9): 623–653. doi: 10.1002/nag.1610160903
|
[27] |
LIU M D, CARTER J P, DESAI C S, et al. Analysis of the compression of structured soils using the disturbed state concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 723–735. doi: 10.1002/1096-9853(200007)24:8<723::AID-NAG92>3.0.CO;2-V
|
[28] |
周成, 沈珠江, 陈生水, 等. 结构性土的次塑性扰动状态模型[J]. 岩土工程学报, 2004, 26(4): 435–439. doi: 10.3321/j.issn:1000-4548.2004.04.001
ZHOU Cheng, SHEN Zhu-jiang, CHEN Sheng-shui, et al. A hypoplasticity disturbed state model for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 435–439. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.001
|
[29] |
王国欣, 肖树芳, 黄宏伟, 等. 基于扰动状态概念的结构性粘土本构模型研究[J]. 固体力学学报, 2004, 25(2): 191–197. doi: 10.3969/j.issn.0254-7805.2004.02.013
WANG Guo-xin, XIAO Shu-fang, HUANG Hong-wei, et al. Study of constitutive model of structural clay based on the disturbed state concept[J]. Acta Mechanica Solida Sinica, 2004, 25(2): 191–197. (in Chinese) doi: 10.3969/j.issn.0254-7805.2004.02.013
|
[30] |
OURIA A. Disturbed state concept-based constitutive model for structured soils[J]. International Journal of Geomechanics, 2017, 17(7): 04017008. doi: 10.1061/(ASCE)GM.1943-5622.0000883
|
[31] |
ANAGNOSTOPOULOS A G, KALTEZIOTIS N, TSIAMBAOS G K, et al. Geotechnical properties of the Corinth canal marls[J]. Geotechnical & Geological Engineering, 1991, 9(1): 1–26.
|
[32] |
YONG R N, NAGARA T S. Investigation of fabric and compressibility of a sensitive clay[C]// Proceedings of the International Symposium on Soft Clay, Asian Institute of Technology, 1997, Bangkok.
|
[33] |
BALASUBRAMANIAM A S, ZUE-MING H. Yielding of weathered bangkok clay[J]. Soils and Foundations, 1980, 20(2): 1–15. doi: 10.3208/sandf1972.20.2_1
|
[34] |
HORPIBULSUK S, MIURA N, BERGADO D T. Undrained shear behavior of cement admixed clay at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1096–1105. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1096)
|
[35] |
ADACHI T, Oka F, Hirata T, et al. Triaxial and torsional hollow cylinder tests on sensitive natural clay and an elasto-viscoplastic constitutive model[C]// Proc 10th European Conference on Soil Mechanics and Foundation Engineering, 1991, Florence.
|
[36] |
WALKER L K, RAYMOND G P. Anisotropic consolidation of Leda clay[J]. Canadian Geotechnical Journal, 1969, 6(3): 271–286. doi: 10.1139/t69-029
|
[37] |
COTECCHIA F, CHANDLER R J. The influence of structure on the pre-failure behaviour of a natural clay[J]. Géotechnique, 1997, 47(3): 523–544. doi: 10.1680/geot.1997.47.3.523
|
1. |
叶帅华,辛亮亮. 基于桩-土界面剪切特性的单桩沉降和承载问题研究. 岩土力学. 2024(05): 1457-1471 .
![]() |