• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Wu-gang, YANG Qing, LIU Wen-hua, YANG Gang, SUN Xiu-li. Structured quantitative characterization and elastoplastic constitutive model of clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 678-686. DOI: 10.11779/CJGE202204010
Citation: LI Wu-gang, YANG Qing, LIU Wen-hua, YANG Gang, SUN Xiu-li. Structured quantitative characterization and elastoplastic constitutive model of clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 678-686. DOI: 10.11779/CJGE202204010

Structured quantitative characterization and elastoplastic constitutive model of clay

More Information
  • Received Date: April 20, 2021
  • Available Online: September 22, 2022
  • Soil structure can improve the stability of soil skeleton. Hence, the void ratio of structured soils is usually higher than that of the reconstituted soils under the same effective stress. Based on the process of the formation of structured soils, the influences of the soil structure on the deformation characteristics are analyzed. Besides, the destruction law of the soil structure in the process of deformation is investigated. A quantitative parameter of the soil structure (relative structure degree) is proposed. The evolution equation for the new parameter during the deformation is obtained according to the experimental data. The volume change equation for the structured soil is derived by incorporating the new parameter. The volume change equation describes the change of the soil structure and compression index of structured soils during deformation. The constitutive model under triaxial stress state for the structured soils is derived by incorporating the modified cam-clay model. The mechanical and deformation behaviors of the structured soils are captured by the proposed model. The new constitutive model is able to predict the mechanical behaviors of the structured soils through the comparisons between the numerical results and the experimental data from three kinds of natural structured soils.
  • [1]
    ROSCOE K H, BURLAND J B. On the Generalized Stress-Strain Behaviour of Wet Clay[M]. Cambridge: Cambridge University Press, 1968: 535–609.
    [2]
    BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329–378. doi: 10.1680/geot.1990.40.3.329
    [3]
    BURGHIGNOLI A, MILIZIANO S, SOCCODATO F M. Cementation effects in two lacustrine clayey soils[J]. Geotechnical and Geological Engineering, 2010, 28(6): 815–833. doi: 10.1007/s10706-010-9343-3
    [4]
    COTECCHIA F, CAFARO F, ARESTA B. Structure and mechanical response of sub-Apennine Blue Clays in relation to their geological and recent loading history[J]. Géotechnique, 2007, 57(2): 167–180. doi: 10.1680/geot.2007.57.2.167
    [5]
    HORPIBULSUK S, MIURA N, BERGADO D T. Undrained shear behavior of cement admixed clay at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1096–1105. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1096)
    [6]
    孔令伟, 吕海波, 汪稔, 等. 某防波堤下卧层软土的工程特性状态分析[J]. 岩土工程学报, 2004, 26(4): 454–458. doi: 10.3321/j.issn:1000-4548.2004.04.005

    KONG Ling-wei, LU Hai-bo, WANG Ren, et al. Analysis on engineering property of underlying soft soil strat um of a breakwater[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 454–458. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.005
    [7]
    LIU M D, CARTER J P. A structured cam clay model[J]. Canadian Geotechnical Journal, 2002, 39(6): 1313–1332. doi: 10.1139/t02-069
    [8]
    SUEBSUK J, HORPIBULSUK S, LIU M D. Modified structured cam clay: a generalised critical state model for destructured, naturally structured and artificially structured clays[J]. Computers and Geotechnics, 2010, 37(7/8): 956–968.
    [9]
    CHOWDHURY B, HAQUE A, MUHUNTHAN B. New pressure–void ratio relationship for structured soils in the virgin compression range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(8): 06014009. doi: 10.1061/(ASCE)GT.1943-5606.0001153
    [10]
    王立忠, 丁利, 陈云敏, 等. 结构性软土压缩特性研究[J]. 土木工程学报, 2004, 37(4): 46–53. doi: 10.3321/j.issn:1000-131X.2004.04.010

    WANG Li-zhong, DING Li, CHEN Yun-min, et al. Study on compressibility of structured soft soil[J]. China Civil Engineering Journal, 2004, 37(4): 46–53. (in Chinese) doi: 10.3321/j.issn:1000-131X.2004.04.010
    [11]
    陈铁林, 周成, 沈珠江. 结构性黏土压缩和剪切特性试验研究[J]. 岩土工程学报, 2004, 26(1): 31–35. doi: 10.3321/j.issn:1000-4548.2004.01.005

    CHEN Tie-lin, ZHOU Cheng, SHEN Zhu-jiang. Compression and shear test of structured clay[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 31–35. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.01.005
    [12]
    殷杰. 土结构性对天然软黏土压缩特性的影响[J]. 岩土力学, 2012, 33(1): 48–52. doi: 10.3969/j.issn.1000-7598.2012.01.008

    YIN Jie. Effect of soil structure on compression behavior of natural soft clays[J]. Rock and Soil Mechanics, 2012, 33(1): 48–52. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.01.008
    [13]
    HUANG Y H, ZHU W, QIAN X D, et al. Change of mechanical behavior between solidified and remolded solidified dredged materials[J]. Engineering Geology, 2011, 119(3/4): 112–119.
    [14]
    AMOROSI A, RAMPELLO S. An experimental investigation into the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153–166. doi: 10.1680/geot.2007.57.2.153
    [15]
    BO M W, ARULRAJAH A, SUKMAK P, et al. Mineralogy and geotechnical properties of Singapore marine clay at Changi[J]. Soils and Foundations, 2015, 55(3): 600–613. doi: 10.1016/j.sandf.2015.04.011
    [16]
    沈珠江, 刘恩龙, 陈铁林. 岩土二元介质模型的一般应力应变关系[J]. 岩土工程学报, 2005, 27(5): 489–494. doi: 10.3321/j.issn:1000-4548.2005.05.001

    SHEN Zhu-jiang, LIU En-long, CHEN Tie-lin. Generalized stress-strain relationship of binary medium model for geological materials[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 489–494. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.05.001
    [17]
    蒋明镜, 刘静德, 孙渝刚. 基于微观破损规律的结构性土本构模型[J]. 岩土工程学报, 2013, 35(6): 1134–1139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm

    JIANG Ming-jing, LIU Jing-de, SUN Yu-gang. Constitutive model for structured soils based on microscopic damage law[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1134–1139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306022.htm
    [18]
    刘恩龙, 沈珠江. 结构性土的二元介质模型[J]. 水利学报, 2005, 36(4): 391–395. doi: 10.3321/j.issn:0559-9350.2005.04.002

    LIU En-long, SHEN Zhu-jiang. Binary medium model for structured soils[J]. Journal of Hydraulic Engineering, 2005, 36(4): 391–395. (in Chinese) doi: 10.3321/j.issn:0559-9350.2005.04.002
    [19]
    谢定义, 齐吉琳, 张振中. 考虑土结构性的本构关系[J]. 土木工程学报, 2000, 33(4): 35–41. doi: 10.3321/j.issn:1000-131X.2000.04.008

    XIE Ding-yi, QI Ji-lin, ZHANG Zhen-zhong. A constitutive laws considering soil structural properties[J]. China Civil Engineering Journal, 2000, 33(4): 35–41. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.04.008
    [20]
    ROUAINIA M, MUIR WOOD D. A kinematic hardening constitutive model for natural clays with loss of structure[J]. Géotechnique, 2000, 50(2): 153–164. doi: 10.1680/geot.2000.50.2.153
    [21]
    祝恩阳, 姚仰平. 结构性土UH模型[J]. 岩土力学, 2015, 36(11): 3101–3110, 3228. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511009.htm

    ZHU En-yang, YAO Yang-ping. A UH constitutive model for structured soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3101–3110, 3228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511009.htm
    [22]
    祝恩阳, 李晓强. 胶结结构性土统一硬化模型[J]. 岩土力学, 2018, 39(1): 112–122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801015.htm

    ZHU En-yang, LI Xiao-qiang. A unified hardening model considering bonding in structured soils[J]. Rock and Soil Mechanics, 2018, 39(1): 112–122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801015.htm
    [23]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193–217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193–217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
    [24]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451–469. doi: 10.1680/geot.2007.00029
    [25]
    姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135–2151. doi: 10.3321/j.issn:1000-6915.2009.10.023

    YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135–2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
    [26]
    DESAI C S, MA Y Z. Modelling of joints and interfaces using the disturbed-state concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(9): 623–653. doi: 10.1002/nag.1610160903
    [27]
    LIU M D, CARTER J P, DESAI C S, et al. Analysis of the compression of structured soils using the disturbed state concept[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(8): 723–735. doi: 10.1002/1096-9853(200007)24:8<723::AID-NAG92>3.0.CO;2-V
    [28]
    周成, 沈珠江, 陈生水, 等. 结构性土的次塑性扰动状态模型[J]. 岩土工程学报, 2004, 26(4): 435–439. doi: 10.3321/j.issn:1000-4548.2004.04.001

    ZHOU Cheng, SHEN Zhu-jiang, CHEN Sheng-shui, et al. A hypoplasticity disturbed state model for structured soils[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 435–439. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.001
    [29]
    王国欣, 肖树芳, 黄宏伟, 等. 基于扰动状态概念的结构性粘土本构模型研究[J]. 固体力学学报, 2004, 25(2): 191–197. doi: 10.3969/j.issn.0254-7805.2004.02.013

    WANG Guo-xin, XIAO Shu-fang, HUANG Hong-wei, et al. Study of constitutive model of structural clay based on the disturbed state concept[J]. Acta Mechanica Solida Sinica, 2004, 25(2): 191–197. (in Chinese) doi: 10.3969/j.issn.0254-7805.2004.02.013
    [30]
    OURIA A. Disturbed state concept-based constitutive model for structured soils[J]. International Journal of Geomechanics, 2017, 17(7): 04017008. doi: 10.1061/(ASCE)GM.1943-5622.0000883
    [31]
    ANAGNOSTOPOULOS A G, KALTEZIOTIS N, TSIAMBAOS G K, et al. Geotechnical properties of the Corinth canal marls[J]. Geotechnical & Geological Engineering, 1991, 9(1): 1–26.
    [32]
    YONG R N, NAGARA T S. Investigation of fabric and compressibility of a sensitive clay[C]// Proceedings of the International Symposium on Soft Clay, Asian Institute of Technology, 1997, Bangkok.
    [33]
    BALASUBRAMANIAM A S, ZUE-MING H. Yielding of weathered bangkok clay[J]. Soils and Foundations, 1980, 20(2): 1–15. doi: 10.3208/sandf1972.20.2_1
    [34]
    HORPIBULSUK S, MIURA N, BERGADO D T. Undrained shear behavior of cement admixed clay at high water content[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1096–1105. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1096)
    [35]
    ADACHI T, Oka F, Hirata T, et al. Triaxial and torsional hollow cylinder tests on sensitive natural clay and an elasto-viscoplastic constitutive model[C]// Proc 10th European Conference on Soil Mechanics and Foundation Engineering, 1991, Florence.
    [36]
    WALKER L K, RAYMOND G P. Anisotropic consolidation of Leda clay[J]. Canadian Geotechnical Journal, 1969, 6(3): 271–286. doi: 10.1139/t69-029
    [37]
    COTECCHIA F, CHANDLER R J. The influence of structure on the pre-failure behaviour of a natural clay[J]. Géotechnique, 1997, 47(3): 523–544. doi: 10.1680/geot.1997.47.3.523
  • Cited by

    Periodical cited type(1)

    1. 叶帅华,辛亮亮. 基于桩-土界面剪切特性的单桩沉降和承载问题研究. 岩土力学. 2024(05): 1457-1471 .

    Other cited types(2)

Catalog

    Article views (216) PDF downloads (229) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return