• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Jin-hong, SHI Chang-zheng, WU He-gao, XU Wen-tao. Soil pressures at top of large-diameter buried steel pipes and their design model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 514-522. DOI: 10.11779/CJGE202203013
Citation: YU Jin-hong, SHI Chang-zheng, WU He-gao, XU Wen-tao. Soil pressures at top of large-diameter buried steel pipes and their design model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 514-522. DOI: 10.11779/CJGE202203013

Soil pressures at top of large-diameter buried steel pipes and their design model

More Information
  • Received Date: May 28, 2021
  • Available Online: September 22, 2022
  • The previous research results of soil pressures at the top of buried steel pipes are mostly based on the small-diameter pipes, which are not fully suitable for large-diameter pipes. Here a numerical investigation is conducted on the soil pressures from the aspects of pipe diameter, diameter-thickness ratio and cover depth, and it is furtherly compared with the traditional design models. The influence parameters on the soil pressure are discussed. A new design model for soil pressures, basin model, is proposed. Wherein, the distribution of the soil pressures is described as "straight line + parabola", and the load calculation adopts the "Marston + pleura" according to the pipe diameter and cover depth. Furthermore, the applicability of the basin model is studied. The results show that the basic form of the soil pressures is the "inverted basin" distribution for large-diameter pipes, while the soil pressures are a parabolic distribution for small-diameter pipes. The diameter-thickness ratio and cover depth have significant influences on the soil pressures, but the soil pressures change very little after the diameter-thickness ratio is greater than 200. The increase of the elastic modulus and Poisson's ratio of backfill and roughness of trench interface, and the decrease of trench width can slightly reduce the soil pressures. The prism and Marston load are too large at high cover depth and small at low cover depth, respectively, which have poor accuracy and adaptability. The basin model is in good agreement with the finite element results, with high calculation accuracy and strong adaptability. It can provide a reference for the structural design of large-diameter buried steel pipes.
  • [1]
    王浩, 游进军. 中国水资源配置30年[J]. 水利学报, 2016, 47(3): 265–271, 282. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201603003.htm

    WANG Hao, YOU Jin-jun. Progress of water resources allocation during the past 30 years in China[J]. Journal of Hydraulic Engineering, 2016, 47(3): 265–271, 282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201603003.htm
    [2]
    中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[ER/OL]. [2021-03-23]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202103/t20210323_1270124.html.
    [3]
    水利水电工程压力钢管设计规范: SL/T 281—2020[S]. 2020.

    Design Specification for Steel Penstocks of Water Conservancy and Hydropower Engineering: SL/T 281—2020[S]. 2020. (in Chinese)
    [4]
    伍鹤皋, 于金弘, 石长征, 等. 水利水电行业回填钢管设计若干问题探讨[J]. 人民长江, 2020, 51(8): 141–146. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202008025.htm

    WU He-gao, YU Jin-hong, SHI Chang-zheng, et al. Discussion on some problems in design of buried steel pipe for water conservancy and hydropower industry[J]. Yangtze River, 2020, 51(8): 141–146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202008025.htm
    [5]
    MARSTON A, ANDERSON A O. The Theory of Loads on Pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipes[R]. Bulletin 31, Iowa Engineering Experiment Station, Ames, Iowa, USA, 1913.
    [6]
    American Water Works Association. Steel pipe: A guide for design and installation[S]. 2017.
    [7]
    LI L, DUBÉ J, AUBERTIN M. An extension of Marston's solution for the stresses in backfilled trenches with inclined walls[J]. Geotechnical and Geological Engineering, 2013, 31(4): 1027–1039. doi: 10.1007/s10706-013-9630-x
    [8]
    SHMULEVICH I, GALILI N, FOUX A. Soil stress distribution around buried pipes[J]. Journal of Transportation Engineering, 1986, 112(5): 481–494. doi: 10.1061/(ASCE)0733-947X(1986)112:5(481)
    [9]
    周正峰, 凌建明, 梁斌. 输油管道土压力分析[J]. 重庆交通大学学报: 自然科学版, 2011(4): 794–797. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201104022.htm

    ZHOU Zheng-Feng, LING Jian-ming, LIANG Bin. Analysis of earth pressure on oil pipe[J]. Journal of Chongqing Jiao Tong University: Natural Science, 2011(4): 794–797. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201104022.htm
    [10]
    周正峰, 苗禄伟, 梁斌. 输油管道土压力影响因素有限元分析[J]. 中外公路, 2014(5): 48–53. doi: 10.3969/j.issn.1671-2579.2014.05.012

    ZHOU Zheng-Feng, MIAO Lu-wei, LIANG Bin. Finite element analysis of influencing factors of soil pressure in oil pipe[J]. Journal of China and Foreign Highway, 2014(5): 48–53. (in Chinese) doi: 10.3969/j.issn.1671-2579.2014.05.012
    [11]
    李永刚. 埋地管道周围土压力分布规律的试验研究[D]. 郑州: 河南工业大学, 2017.

    LI Yong-gang. Experimental Study on Earth Pressure Distribution around Buried Pipeline[D]. Zhengzhou: University of Technology, 2017. (in Chinese)
    [12]
    TIAN Y, LIU H, JIANG X, et al. Analysis of stress and deformation of a positive buried pipe using the improved Spangler model[J]. Soils and Foundations, 2015, 55(3): 485–492. doi: 10.1016/j.sandf.2015.04.001
    [13]
    KAWABATA T, LING H I, MOHRI Y, et al. Behavior of buried flexible pipe under high fills and design implications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1354–1362. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1354)
    [14]
    KAWABATA T, MOHRI Y, TAMURA H, et al. Field test for buried large steel pipes with thin wall[C]// Pipelines 2006: Service to the Owner 2006, Chicago.
    [15]
    伍鹤皋, 于金弘, 石长征, 等. 大直径回填钢管管土相互作用研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(10): 1053–1061. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202010008.htm

    WU He-gao, YU Jin-hong, SHI Chang-zheng, et al. Pipe-soil interaction of large-diameter buried steel pipe[J]. Journal of Tianjin University(Science and Technology), 2020, 53(10): 1053–1061. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202010008.htm
    [16]
    WU H G, YU J H, SHI C Z, et al. Pipe-soil interaction and sensitivity study of large-diameter buried steel pipes[J]. KSCE Journal of Civil Engineering, 2021, 1(12): 793–804.
    [17]
    周敏, 杜延军, 王非, 等. 地层沉陷中埋地HDPE管道力学状态及模型试验分析[J]. 岩土工程学报, 2016, 38(2): 253–262. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16441.shtml

    ZHOU Min, DU Yan-jun, WANG Fei, et al. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253–262. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16441.shtml
    [18]
    给水排水工程埋地钢管管道结构设计规程: CECS 141—2002[S]. 2002.

    Specification for Structural Design of Buried Steel Pipeline of Water Supply and Sewerage Engineering: CECS 141—2002[S]. 2002. (in Chinese)
    [19]
    给水排水管道工程施工及验收规范: GB 50268—2008[S]. 2008.

    Code for Construction and Acceptance of Water and Sewerage Pipeline Works: GB 50268—2008[S]. 2008. (in Chinese)
    [20]
    化建新, 郑建国, 王笃礼, 等. 工程地质手册[M]. 北京: 中国建筑工业出版社, 2018.

    HUA Jian-xin, ZHENG Jian-guo, WANG Du-li, et al. Engineering Geology Manual [M]. Beijing: China Architecture & Building Press. (in Chinese)
    [21]
    袁聚云, 钱建固, 张宏鸣, 等. 土质学与土力学[M]. 北京: 人民交通出版社, 2015.

    YUAN Ju-yun, QIAN Jian-gu, ZHANG Hong-ming, et al. Soil Preoperties and Soil Mechanics[M]. Beijing: China Communications Press. (in Chinese)
    [22]
    WHIDDEN W R. Buried Flexible Steel Pipe: Design and Structural Analysis[S]. 2009.
    [23]
    李新慧. 天然气埋地管道沉降的有限元分析[J]. 岩土工程学报, 2013, 35(增刊1): 259–263. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15199.shtml

    LI Xin-hui. Finite element analysis of settlement of buried natural gas pipelines[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 259–263. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15199.shtml
    [24]
    MEGUID M A, YOUSSEF T A. Experimental investigation of the earth pressure distribution on buried pipes backfilled with tire-derived aggregate[J]. Transportation Geotechnics, 2018, 14: 117–125. doi: 10.1016/j.trgeo.2017.11.007
    [25]
    埋地塑料给水管道工程技术规程: CJJ 101—2016[S]. 2016.

    Technical Specification for Buried Plastic Pipeline of Water Supply Engineering: CJJ 101—2016[S]. 2016. (in Chinese)
    [26]
    日本水門鉄管協会. 水門鉄管技術基準[S]. 2007.

    Hydraulic Gate and Penstock Association. Technical Standards for Gates and Penstocks[S]. 2007. (in Japanese)
  • Cited by

    Periodical cited type(1)

    1. 师为战,刘志腾,彭宝山,胡艳波,殷浩,夏宏根,苌玉. 巨厚煤层工作面“见方”微震时空演化规律分析与防治技术. 能源科技. 2025(01): 14-20 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return