• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LU Xin-yue, XU Cheng-shun, HOU Ben-wei, DU Xiu-li, LI Li-yun. Risk assessment of metro construction based on dynamic Bayesian network[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 492-501. DOI: 10.11779/CJGE202203011
Citation: LU Xin-yue, XU Cheng-shun, HOU Ben-wei, DU Xiu-li, LI Li-yun. Risk assessment of metro construction based on dynamic Bayesian network[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 492-501. DOI: 10.11779/CJGE202203011

Risk assessment of metro construction based on dynamic Bayesian network

More Information
  • Received Date: April 18, 2021
  • Available Online: September 22, 2022
  • Recently, tunnel construction has developed rapidly in China. However, tunnel construction accidents occur frequently. In order to reveal the risk evolution process during the construction process over time, a dynamic tunnel construction risk assessment method is proposed based on the dynamic Bayesian network (DBN) and the fuzzy comprehensive evaluation method (FCEM). The settlement monitoring data induced by underpass tunnel excavation can be used to evaluate the real-time risk of above-ground structures by employing the proposed method. Twelve risk factors are classified into construction environment, construction technology, construction machinery and construction management. The causal relationship between twelve risk factors and tunnel construction risk is considered to build the DBN model, and the model is used to predict the evolution of risk during the construction process. The monitoring data of settlement and subsidence rate are used to update the assessment results of dynamic risk probability. The tunnel construction risk is evaluated by the fuzzy comprehensive evaluation method and the construction dynamic risk is calculated by the definition of risk. The reasonability of the proposed method is verified through the case of shield construction project of Beijing Metro Line 14. The results show that the proposed method can reflect the unexpected risk events in the actual construction process.
  • [1]
    ESKESEN S D, TENGBORG P, KAMPMANN J, et al. Guidelines for tunnelling risk management: international tunnelling association, Working Group No. 2[J]. Tunnelling and Underground Space Technology, 2004, 19(3): 217–237. doi: 10.1016/j.tust.2004.01.001
    [2]
    徐琛, 刘晓丽, 王恩志, 等. 基于组合权重–理想点法的应变型岩爆五因素预测分级[J]. 岩土工程学报, 2017, 39(12): 2245–2252. doi: 10.11779/CJGE201712013

    XU Chen, LIU Xiao-li, WANG En-zhi, et al. Prediction and classification of strain mode rockburst based on five-factor criterion and combined weight-ideal point method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2245–2252. (in Chinese) doi: 10.11779/CJGE201712013
    [3]
    田雨, 马如进, 陈艾荣, 等. 临近并行的高铁桥梁与高速公路相互影响的安全风险评估[J]. 振动与冲击, 2016, 35(21): 69–75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201621012.htm

    TIAN Yu, MA Ru-jin, CHEN Ai-rong, et al. Safety risk assessment for interactive influences between adjacent and parallel high-speed railway bridges and highway[J]. Journal of Vibration and Shock, 2016, 35(21): 69–75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201621012.htm
    [4]
    王者超, 陆宝麒, 李术才, 等. 地下水封石油洞库施工期安全风险评估研究[J]. 岩土工程学报, 2015, 37(6): 1057–1067. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506015.htm

    WANG Zhe-chao, LU Bao-qi, LI Shu-cai, et al. Risk assessment for an underground crude oil storage facility with water-curtaining system during construction phase[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1057–1067. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506015.htm
    [5]
    HYUN K C, MIN S, CHOI H, et al. Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels[J]. Tunnelling and Underground Space Technology, 2015, 49: 121–129. doi: 10.1016/j.tust.2015.04.007
    [6]
    ŠPAČKOVÁ O, NOVOTNÁ E, ŠEJNOHA M, et al. Probabilistic models for tunnel construction risk assessment[J]. Advances in Engineering Software, 2013, 62: 72–84.
    [7]
    蒋水华, 杨建华, 姚池, 等. 考虑土体参数空间变异性边坡失稳风险定量评估[J]. 工程力学, 2018, 35(1): 136–147. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201801012.htm

    JIANG Shui-hua, YANG Jian-hua, YAO Chi, et al. Quantitative risk assessment of slop failure considering spatial variability of soil properties[J]. Engineering Mechanics, 2018, 35(1): 136–147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201801012.htm
    [8]
    LI F W, PHOON K K, DU X L, et al. Improved AHP method and its application in risk identification[J]. Journal of Construction Engineering and Management, 2013, 139(3): 312–320. doi: 10.1061/(ASCE)CO.1943-7862.0000605
    [9]
    钟国强, 王浩, 孔利, 等. 基于T-S模糊故障树的地连墙+支撑支护基坑坍塌可能性评价[J]. 岩土力学, 2019, 40(4): 1569–1576. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904040.htm

    ZHONG Guo-qiang, WANG Hao, KONG Li, et al. Evaluation of the possibility of foundation pit collapse with "diaphragm wall+support" based on T-S fuzzy fault tree[J]. Rock and Soil Mechanics, 2019, 40(4): 1569–1576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904040.htm
    [10]
    戢晓峰, 谢世坤, 覃文文, 等. 基于轨迹数据的山区危险性弯道路段交通事故风险动态预测[J]. 中国公路学报, 2020, 33: 1–15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202204023.htm

    JI Xiao-feng, XIE Shi-kun, QIN Wen-wen, et al. Dynamic prediction of traffic accident risk in risky curve sections based on vehicle trajectory data[J]. China Journal of Highway and Transport, 2020, 33: 1–15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202204023.htm
    [11]
    吕楠, 赵敬源. 基于贝叶斯概率理论的物流园区选址优化研究[J]. 中国公路学报, 2020, 33(9): 251–260. doi: 10.3969/j.issn.1001-7372.2020.09.024

    LÜ Nan, ZHAO Jing-yuan. Location optimization of logistics park based on Bayesian probability theory[J]. China Journal of Highway and Transport, 2020, 33(9): 251–260. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.09.024
    [12]
    WU X G, JIANG Z, ZHANG L M, et al. Dynamic risk analysis for adjacent buildings in tunneling environments: a Bayesian network based approach[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(5): 1447–1461. doi: 10.1007/s00477-015-1045-1
    [13]
    WANG Z Z, CHEN C. Fuzzy comprehensive Bayesian network- based safety risk assessment for metro construction projects[J]. Tunnelling and Underground Space Technology, 2017, 70: 330–342. doi: 10.1016/j.tust.2017.09.012
    [14]
    XIANG W, ZHOU W. Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets[J]. Reliability Engineering & System Safety, 2021, 205: 107262.
    [15]
    周宗青, 李术才, 李利平, 等. 浅埋隧道塌方地质灾害成因及风险控制[J]. 岩土力学. 2013, 34(5): 1375–1382. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305022.htm

    ZHOU Zong-qing, LI Shu-cai, LI Li-ping, et al. Causes of geological hazards and risk control of collapse in shallow tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1375–1382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305022.htm
    [16]
    WANG N, XU C S, DU X L, et al. Probability risk assessment approach for sequential, prior and trigger- dependent multi-state systems based on DBNs[J]. Journal of Intelligent and Fuzzy Systems, 2018, 35(2): 2091–2103. doi: 10.3233/JIFS-172063
    [17]
    SOUSA R L, EINSTEIN H H. Risk analysis during tunnel construction using Bayesian networks: Porto metro case study[J]. Tunnelling and Underground Space Technology, 2012, 27(1): 86–100. doi: 10.1016/j.tust.2011.07.003
    [18]
    ŠPAČKOVÁ O, STRAUB D. Dynamic Bayesian network for probabilistic modeling of tunnel excavation processes[J]. Computer-Aided Civil and Infrastructure Engineering, 2013, 28(1): 1–21. doi: 10.1111/j.1467-8667.2012.00759.x
    [19]
    熊自明, 卢浩, 王明洋, 等. 中国大型岩土工程施工安全风险管理研究进展[J]. 岩土力学, 2018, 39(10): 3703–3716. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810028.htm

    XIONG Zi-ming, LU Hao, WANG Ming-yang, et al. Research progress on safety risk management for large scale geotechnical engineering construction in China[J]. Rock and Soil Mechanics, 2018, 39(10): 3703–3716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810028.htm
    [20]
    周健, 柴嘉辉, 丁修恒, 等. 盾构隧道施工预测与动态调控方法研究[J]. 岩土工程学报, 2019, 41(5): 821–828. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905005.htm

    ZHOU Jian, CHAI Jia-hui, DING Xiu-heng, et al. Construction prediction and dynamic control of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 821–828. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905005.htm
    [21]
    李立云, 董莹莹. 一种地下开挖卸载作用下毗邻建筑物安全评估方法[J]. 土木工程与管理学报. 2017, 34(6): 23–28. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201706004.htm

    LI Li-yun, DONG Ying-ying. Method of safety assessment for adjacent building under unloading of underground excavation[J]. Journal of Civil Engineering and Management, 2017, 34(6): 23–28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201706004.htm
    [22]
    苏洁, 张顶立, 周正宇, 等. 地铁隧道穿越既有桥梁安全风险评估及控制[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3188–3195. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1073.htm

    SU Jie, ZHANG Ding-li, ZHOU Zheng-yu, et al. Safety risk assessment and control of existing bridge crossed by tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3188–3195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1073.htm
    [23]
    WU X G, WANG Y H, ZHANG L M, et al. A dynamic decision approach for risk analysis in complex projects[J]. Journal of Intelligent & Robotic Systems, 2015, 79(3/4): 591–601.
    [24]
    WEBER P, MEDINA-OLIVA G, SIMON C, et al. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 671–682.
    [25]
    XIANG W, ZHOU W X. Integrated pipeline corrosion growth modeling and reliability analysis using dynamic Bayesian network and parameter learning technique[J]. Structure and Infrastructure Engineering, 2020, 16(8): 1161–1176.
    [26]
    FENG X, JIANG J, WANG W. Gas pipeline failure evaluation method based on a Noisy-or gate Bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2020, 66: 104175.
    [27]
    ZAGORECKI A, DRUZDZEL M J. An empirical study of probability elicitation under Noisy-or assumption[C]// American Association for Artificial Intelligence Flairs Conference, 2004, Florida.
    [28]
    ZAGORECKI A, DRUZDZEL M J. Knowledge engineering for Bayesian networks: how common are Noisy-max distributions in practice[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(1): 186–195.
    [29]
    郭健, 钱劲斗, 陈健, 等. 地铁车站深基坑施工风险识别与评价[J]. 土木工程与管理学报. 2017, 34(5): 32–38. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201705007.htm

    GUO Jian, QIAN Jin-dou, CHEN Jian, et al. Risk identification and evaluation for foundation pit construction of subway station[J]. Journal of Civil Engineering and Management, 2017, 34(5): 32–38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201705007.htm
    [30]
    RITTER S, GIARDINA G, DEJONG M J, et al. Centrifuge modelling of building response to tunnel excavation[J]. International Journal of Physical Modelling in Geotechnics, 2018, 18(3): 146–161.
    [31]
    陈洁金, 张永杰. 下穿既有桥梁隧道施工风险定量评估方法[J]. 中南大学学报(自然科学版). 2015, 46(5): 1862–1868. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201505039.htm

    CHEN Jie-jin, ZHANG Yong-jie. Quantitative Risk assessment model of tunnel construction under passing existing bridges[J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1862–1868. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201505039.htm
    [32]
    张连文, 郭海鹏. 贝叶斯网引论[M]. 北京: 科学出版社, 2006.

    ZHANG Lian-wen, GUO Hai-peng. Introduction to Bayesian Networks[M]. Beijing: Science Press, 2006. (in Chinese)
    [33]
    陈龙. 城市软土盾构隧道施工期风险分析与评估研究[D]. 上海: 同济大学, 2004.

    CHEN Long. Risk Analysis and Assessment of Shield Tunnel in Soft Soil During construction[D]. Shanghai: Tongji University, 2004. (in Chinese)
    [34]
    丁保军. 基于BN的地铁施工及盾构刀盘失效风险研究[D]. 武汉: 华中科技大学, 2015.

    DING Bao-jun. Study on the Risk Management of Subway Construction and Shield Cutter Head Failure Based on Bayesian Network[D]. Wuhan: Huazhong University of Science and Technology, 2015. (in Chinese)
    [35]
    丁保军, 吴贤国, 张立茂, 等. 基于DBN的盾构隧道施工参数优化方法研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3215–3222. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1076.htm

    DING Bao-jun, WU Xian-guo, ZHANG Li-mao, et al. Optimization of shield tunneling parameters based on dynamic Bayesian networks[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3215–3222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1076.htm
    [36]
    陈军, 兀亚伟, 李垣志, 等. 基于动态贝叶斯网络的燃气管网燃爆风险分析[J]. 北京理工大学学报, 2021, 41(7): 696–705. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202107003.htm

    CHEN Jun, WU Ya-wei, LI Yuan-zhi, et al. Risk analysis of burning and explosion of gas pipeline network based on dynamic Bayesian network[J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 696–705. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202107003.htm
    [37]
    WU X G, LIU H T, ZHANG L M, et al. A dynamic Bayesian network based approach to safety decision support in tunnel construction[J]. Reliability Engineering & System Safety, 2015, 134: 157–168.
    [38]
    蒋光昱, 王忠静, 索滢. 西北典型节水灌溉技术综合性能的层次分析与模糊综合评价[J]. 清华大学学报(自然科学版), 2019, 59(12): 981–989. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201912004.htm

    JIANG Guang-yu, WANG Zhong-jing, SUO Ying. Hierarchical analysis and fuzzy evaluation of comprehensive performance of typical water-saving irrigation techniques in northwest China[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(12): 981–989. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201912004.htm
    [39]
    ZHOU H B, ZHANG H. Risk assessment methodology for a deep foundation pit construction project in Shanghai, China[J]. Journal of Construction Engineering and Management, 2011, 137(12): 1185–1194.

Catalog

    Article views (485) PDF downloads (367) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return