Citation: | SHEN Chao, BO Jing-shan, ZHANG Xue-dong, SUN Qiang-qiang, WANG Lei. Centrifugal model tests on surface deformation and setback distance of reverse faults[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 420-427. DOI: 10.11779/CJGE202203003 |
[1] |
江娃利. 论地质学者的地震理念[J]. 地震地质, 2008, 30(1): 305–323. doi: 10.3969/j.issn.0253-4967.2008.01.023
JIANG Wa-li. Discussion on seismological principle of geologist[J]. Seismology and Geology, 2008, 30(1): 305–323. (in Chinese) doi: 10.3969/j.issn.0253-4967.2008.01.023
|
[2] |
LAWSON A C, REID H F. The California Earthquake of April 18, 1906[R]. Washington D C: Report of the State Earthquake Investigation Commission, Carnegie Institution, 1908.
|
[3] |
《活动断裂研究》编委会. 活动断裂研究-1[M]. 北京: 地震出版社, 1991.
Research on Active Fault: 1[M]. Beijing: Seismological Press, 1991. (in Chinese)
|
[4] |
徐锡伟, 郭婷婷, 刘少卓, 等. 活动断层避让相关问题的讨论[J]. 地震地质, 2016, 38(3): 477–502. doi: 10.3969/j.issn.0253-4967.2016.03.001
XU Xi-wei, GUO Ting-ting, LIU Shao-zhuo, et al. Discussion on issues associated with setback distance from active fault[J]. Seismology and Geology, 2016, 38(3): 477–502. (in Chinese) doi: 10.3969/j.issn.0253-4967.2016.03.001
|
[5] |
SCHOLZ C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd ed. New York: Cambridge University Press, 2002.
|
[6] |
沈超, 薄景山, 张建毅, 等. 土工离心模拟技术在断层错动研究中的应用[J]. 自然灾害学报, 2018, 27(3): 47–55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201803006.htm
SHEN Chao, BO Jing-shan, ZHANG Jian-yi, et al. Application of geotechnical centrifuge technology in the study of fault movement[J]. Journal of Natural Disasters, 2018, 27(3): 47–55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201803006.htm
|
[7] |
薄景山, 黄静宜, 张建毅, 等. 基于逻辑回归分析的强震地表破裂预测方法[J]. 地震工程与工程振动, 2019, 39(4): 1–7. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201904001.htm
BO Jing-shan, HUANG Jing-yi, ZHANG Jian-yi, et al. A prediction method of surface rupture in strong earthquakes based on logistic regression analysis[J]. Earthquake Engineering and Engineering Dynamic, 2019, 39(4): 1–7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201904001.htm
|
[8] |
ZHOU Q, XU X W, YU G H, et al. Width distribution of the surface ruptures associated with the Wenchuan Earthquake: implication for the setback zone of the seismogenic faults in postquake reconstruction[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2660–2668. doi: 10.1785/0120090293
|
[9] |
黄静宜, 薄景山, 沈超, 等. 强震地表破裂工程评估研究的若干进展[J]. 自然灾害学报, 2016, 25(6): 94–104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201606012.htm
HUANG Jing-yi, BO Jing-shan, SHEN Chao, et al. Progress in research on engineering evaluation of surface ruptures in strong earthquakes[J]. Journal of Natural Disasters, 2016, 25(6): 94–104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201606012.htm
|
[10] |
徐锡伟, 赵伯明, 马胜利, 等. 活动断层地震灾害预测方法与应用[M]. 北京: 科学出版社, 2011.
XU Xi-wei, ZHAO Bo-ming, MA Sheng-li, et al, Assessing Method for Earthquake Hazard and Its Application[M]. Beijing: Science Press, 2011. (in Chinese)
|
[11] |
蔡奇鹏, 吴宏伟, 陈星欣, 等. 正断层错动诱发单桩破坏及避让距离研究[J]. 岩土工程学报, 2017, 39(4): 720–726. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704022.htm
CAI Qi-peng, NG C W W, CHEN Xing-xin, et al. Failure mechanism and setback distance of single pile subjected to normal faulting[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 720–726. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201704022.htm
|
[12] |
YU G, XU X, KLINGER Y, et al. Fault-Scarp Features and Cascading-Rupture Model for the Wenchuan Earthquake (Mw 7.9), Eastern Tibetan Plateau, China[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2590–2614. doi: 10.1785/0120090255
|
[13] |
HART E W, BRYANT W A. fault-rupture hazard zones in California: Alquist-Priolo earthquake fault zoning act with index to earthquake fault zones maps[C]// California: Division of Mines and Geology: Special Publication, 1999, 42: 1–38.
|
[14] |
MCCALPIN J P. Recommended setback distances from active normal faults[C]// Proceedings of the 23rd Symposium on Engineering Geology and Soils Engineering, 1987, Logan, Utah.
|
[15] |
European Committee for Standardization. Eurocode 8"Design of Structures for Earthquake Resistance. Part 5: Foundations, Retaining Structures, and Geotechnical Aspects"[S]. 1998.
|
[16] |
NAKATA T, KUMAMOTO T. Problem of land use as seen from the active fault location information and active fault act in Japan[J]. Active Fault Research, 2003: 13–18. (in Japanese)
|
[17] |
DISSEN R V, BARRELL D, LITCHFIELD N, et al. Surface rupture displacement on the Greendle Fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand, and its impact on man-made structures[J]. Acoustical Society of America Journal, 2011, 138(50): 8247–8259.
|
[18] |
台湾营建署. 建筑技术规则-建筑设计施工篇[S]. 1998.
Taiwan Construction Agency. Building Technology Regulation-Architectural Design and Construction[S]. 1998. (in Chinese)
|
[19] |
建筑抗震设计规范: GB 50011—2010(2016)[S]. 2010.
Code for Seismic Design of Buildings: GB50011—2010[S]. 2010. (in Chinese)
|
[20] |
ROTH W H, SCOTT R F, AUSTIN I. Centrifuge modeling of fault propagation through alluvial soils[J]. Geophysical Research Letters, 1981, 8(6): 561–564. doi: 10.1029/GL008i006p00561
|
[21] |
BURRINGE P B, SCOTT R F, HALL J F. Centrifuge study of faulting effects on tunnel[J]. Journal of Geotechnical Engineering, 1989, 115(7): 949–967. doi: 10.1061/(ASCE)0733-9410(1989)115:7(949)
|
[22] |
LEE J W, HAMADA M. An experimental study on earthquake fault rupture propagation through a sandy soil deposit[J]. Structural Engineering/Earthquake Engineering, 2005, 22(1): 1S–13S. doi: 10.2208/jsceseee.22.1s
|
[23] |
ANASTASOPOULOS I, GAZETAS G, BRANSBY M F, et al. Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments[J]. Journal of Geotechnical and Geo-environmental Engineering, 2007, 133(8): 943–958. doi: 10.1061/(ASCE)1090-0241(2007)133:8(943)
|
[24] |
BRANSBY M F, DAVIES M C R, EL NAHAS A, et al. Centrifuge modelling of reverse fault-foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, 6(4): 607–628. doi: 10.1007/s10518-008-9080-7
|
[25] |
AHMED W, BRANSBY M F. Interaction of shallow foundations with reverse faults[J]. Journal of Geotechnical and Geo-Environmental Engineering, 2009, 135(7): 914–924. doi: 10.1061/(ASCE)GT.1943-5606.0000072
|
[26] |
LOLI M, ANASTASOPOULOS I. Normal and reverse fault rupture interaction with caisson foundations: centrifuge modeling and numerical simulation[C]// 5th International Conference on Earthquake Geotechnical Engineering, 2011, Santiago, Chile.
|
[27] |
CHANG Y Y, LEE C J, HUANG W C, et al. Use of centrifuge experiments and discrete element analysis to model the reverse fault slip[J]. International Journal of Civil Engineering, 2013, 11(2): 79–89.
|
[28] |
陈宇龙, 黄栋. 正断层与逆断层错动引起的上覆黏土变形特性离心试验[J]. 岩土力学, 2017, 38(增刊1): 189–194. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1027.htm
CHEN Yu-long, HUANG Dong. Centrifuge test of deformation characteristics of overburden clay subjected to normal and reverse fault rupture[J]. Rock and Soil Mechanics, 2017, 38(S1): 189–194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1027.htm
|
[29] |
YAO C, TAKEMURA J. Using laser displacement transducer scanning technique in centrifuge modeling of reverse fault–foundation interaction[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 219–232. doi: 10.1016/j.soildyn.2019.03.018
|
[30] |
TAKEMURA J, YAO C, KUSAKABE O. Development of a fault simulator for soils under large vertical stress in a centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2020, 20(3): 181–131.
|
[31] |
SHEN C, BO J S, QI W H, et al. Analysis of the surface rupture process of strong earthquakes based on centrifuge tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106239. doi: 10.1016/j.soildyn.2020.106239
|
[32] |
沈超, 薄景山, 张雪东, 等. 断层上覆土体破裂的离心试验模型参数设计及应用[J]. 水利学报, 2020, 51(5): 569–579, 588. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202005008.htm
SHEN Chao, BO Jing-shan, ZHANG Xue-dong, et al. Design and application of model parameters for centrifugal test of overlying soil rupture caused by fault[J] Journal of Hydraulic Engineering, 2020, 51(5): 569–579, 588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202005008.htm
|
[33] |
危险房屋鉴定标准: JGJ125—2016[S]. 2016.
Standard for Dangerous Building Appraisal: JGJ125—2016[S]. 2016. (in Chinese)
|
[34] |
赵颖. 通过活断层区地铁隧道地震反应分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2014.
ZHAO Ying. Seismic Response Analyses of Metro Tunnel Across Active Fault[D]. Harbin: Institute of Engineering Mechanics, CEA, 2014. (in Chinese)
|
1. |
张新军,张春雷,秦雨霏,沈威,王建望. 地面荷载对城市隧道围岩变形破坏特征影响. 水利与建筑工程学报. 2025(02): 191-196 .
![]() | |
2. |
李星,龚贵友,何俊雄. 地表埋深对大跨径地铁隧道变形影响分析. 黑龙江交通科技. 2024(11): 126-130 .
![]() | |
3. |
陈超峰,丁智,孙宏磊,王震. 列车振动对水下隧道影响研究综述. 低温建筑技术. 2024(10): 81-85 .
![]() |