• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Liangliang, CHENG Hua, YAO Zhishu, WANG Xiaojian. Improved Knothe surface dynamic subsidence prediction model and its parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1036-1044. DOI: 10.11779/CJGE20220295
Citation: ZHANG Liangliang, CHENG Hua, YAO Zhishu, WANG Xiaojian. Improved Knothe surface dynamic subsidence prediction model and its parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1036-1044. DOI: 10.11779/CJGE20220295

Improved Knothe surface dynamic subsidence prediction model and its parameter analysis

More Information
  • Received Date: March 17, 2022
  • Available Online: May 18, 2023
  • In view of the shortcomings of the traditional Knothe time model in describing the process of surface dynamic subsidence, based on the Knothe time model, considering the nonlinear mechanical characteristics of the overlying strata, an improved Knothe time model is established. The theoretical analysis shows that the improved time model conforms to the variation laws of surface single point subsidence, subsidence velocity and subsidence acceleration. Based on the field measured data and the two-medium method, the expression for parameters of the improved Knothe time model is given. Based on the surface subsidence monitoring data of 4326 working face of Xinglongzhuang Coal Mine, 35101 working face of Sandaogou Coal Mine and 8403 fully mechanized working face of Yangquan No. 2 Coal Mine, the accuracies of the traditional Knothe time model and the improved Knothe time model are compared and analyzed. The results show that the improved time model can more truly reflect the dynamic change process of the surface with the mining time. The average relative standard deviation between the predicted and measured values is only 3.22%, which is far lower than 15.72% of the Knothe time model, which verifies the accuracy and reliability of the improved time model. The process of surface dynamic subsidence is affected by the mining speed v of coal seam, the thickness Hs of loose layer, the thickness Hj of bedrock layer and the full mining angle of loose layer φi and the full mining angle of bedrock φj, and the impact sensitivity is in the order of Hj, v, Hs, φj and φi. The results may provide some reference for the prediction of surface subsidence in coal seam mining.
  • [1]
    HU Q F, CUI X M, WANG G, et al. Key technology of predicting dynamic surface subsidence based on knothe time function[J]. Journal of Software, 2011, 6(7): 1273–1280.
    [2]
    高超, 徐乃忠, 孙万明, 等. 基于Bertalanffy时间函数的地表动态沉陷预测模型[J]. 煤炭学报, 2020, 45(8): 2740-2748.

    GAO Chao, XU Naizhong, SUN Wanming, et al. Dynamic surface subsidence prediction model based on Bertalanffy time function[J]. Journal of China Coal Society, 2020, 45(8): 2740-2748. (in Chinese)
    [3]
    HEJMANOWSKI R, MALINOWSKA A. Evaluation of reliability of subsidence prediction based on spatial statistical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 432–438. doi: 10.1016/j.ijrmms.2008.07.012
    [4]
    JAROSZ A, KARMIS M, SROKA A. Subsidence development with time—experiences from longwall operations in the Appalachian Coalfield[J]. International Journal of Mining and Geological Engineering, 1990, 8(3): 261-273. doi: 10.1007/BF01554045
    [5]
    孙闯, 徐乃忠, 刘义新, 等. 基于双因素时间函数的松散地层条件下地表点动态沉降预计[J]. 岩土力学, 2017, 38(3): 821-826, 865.

    SUN Chuang, XU Naizhong, LIU Yixin, et al. Prediction of dynamic subsidence of ground point under loose stratum based on two-factor time function[J]. Rock and Soil Mechanics, 2017, 38(3): 821-826, 865. (in Chinese)
    [6]
    王军保, 刘新荣, 刘小军. 开采沉陷动态预测模型[J]. 煤炭学报, 2015, 40(3): 516-521.

    WANG Junbao, LIU Xinrong, LIU Xiaojun. Dynamic prediction model for mining subsidence[J]. Journal of China Coal Society, 2015, 40(3): 516-521. (in Chinese)
    [7]
    唐君, 王金安, 王磊. 薄冲积层下开采地表动态移动规律与特征[J]. 岩土力学, 2014, 35(10): 2958-2968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410029.htm

    TANG Jun, WANG Jinan, WANG Lei. Dynamic laws and characteristics of surface movement induced by mining under thin alluvium[J]. Rock and Soil Mechanics, 2014, 35(10): 2958-2968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410029.htm
    [8]
    刘玉成, 庄艳华. 地下采矿引起的地表下沉的动态过程模型[J]. 岩土力学, 2009, 30(11): 3406-3410, 3416. doi: 10.3969/j.issn.1000-7598.2009.11.031

    LIU Yucheng, ZHUANG Yanhua. Model for dynamic process of ground surface subsidence due to underground mining[J]. Rock and Soil Mechanics, 2009, 30(11): 3406-3410, 3416. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.031
    [9]
    张凯, 胡海峰, 廉旭刚, 等. 地表动态沉陷预测正态时间函数模型优化研究[J]. 煤炭科学技术, 2019, 47(9): 235-240. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909030.htm

    ZHANG Kai, HU Haifeng, LIAN Xugang, et al. Optimization of surface dynamic subsidence prediction normal time function model[J]. Coal Science and Technology, 2019, 47(9): 235-240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909030.htm
    [10]
    李德海. 覆岩岩性对地表移动过程时间影响参数的影响[J]. 岩石力学与工程学报, 2004, 23(22): 3780-3784.

    LI Dehai. Influence of cover rock characteristics on time influencing parameters in process of surface movement[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(22): 3780-3784. (in Chinese)
    [11]
    常占强, 王金庄. 关于地表点下沉时间函数的研究: 改进的克诺特时间函数[J]. 岩石力学与工程学报, 2003, 22(9): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200309018.htm

    CHANG Zhanqiang, WANG Jinzhuang. Study on time function of surface subsidence—the improved knothe time function[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(9): 1496-1499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200309018.htm
    [12]
    张兵, 崔希民, 赵玉玲, 等. 优化分段Knothe时间函数求参方法[J]. 煤炭学报, 2018, 43(12): 3379-3386.

    ZHANG Bing, CUI Ximin, ZHAO Yuling, et al. Parameter calculation method for optimized segmented Knothe time function[J]. Journal of China Coal Society, 2018, 43(12): 3379-3386. (in Chinese)
    [13]
    朱广轶, 沈红霞, 王立国. 地表动态移动变形预测函数研究[J]. 岩石力学与工程学报, 2011, 30(9): 1889-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109020.htm

    ZHU Guangyi, SHEN Hongxia, WANG Liguo. Study of dynamic prediction function of surface movement and deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1889-1895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109020.htm
    [14]
    CHENG H, ZHANG L L, GUO L H, et al. A new dynamic prediction model for underground mining subsidence based on inverse function of unstable creep[J]. Advances in Civil Engineering, 2021, 2021: 1-9.
    [15]
    ZHU X J, GUO G L, ZHA J F, et al. Surface dynamic subsidence prediction model of solid backfill mining[J]. Environmental Earth Sciences, 2016, 75(12): 1007.
    [16]
    ZHANG L L, CHENG H, YAO Z S, et al. Application of the improved knothe time function model in the prediction of ground mining subsidence: a case study from Heze city, Shandong Province, China[J]. Applied Sciences, 2020, 10(9): 3147.
    [17]
    崔希民, 缪协兴, 赵英利, 等. 论地表移动过程的时间函数[J]. 煤炭学报, 1999, 24(5): 453-456. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB199905001.htm

    CUI Ximin, MIAO Xiexing, ZHAO Yingli, et al. Discussion on the time function of time dependent surface movement[J]. Journal of China Coal Society, 1999, 24(5): 453-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB199905001.htm
    [18]
    王正帅, 邓喀中. 采动区地表动态沉降预测的Richards模型[J]. 岩土力学, 2011, 32(6): 1664-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106015.htm

    WANG Zhengshuai, DENG Kazhong. Richards model of surface dynamic subsidence prediction in mining area[J]. Rock and Soil Mechanics, 2011, 32(6): 1664-1668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106015.htm
    [19]
    张兵, 崔希民, 胡青峰. 开采沉陷动态预计的正态分布时间函数模型研究[J]. 煤炭科学技术, 2016, 44(4): 140-145, 174.

    ZHANG Bing, CUI Ximin, HU Qingfeng. Study on normal distributed time function model to dynamically predict mining subsidence[J]. Coal Science and Technology, 2016, 44(4): 140-145, 174. (in Chinese)
    [20]
    席国军, 洪兴, 邵红旗. 改进Logistic函数模型在地表下沉预计中的应用[J]. 煤炭科学技术, 2013, 41(8): 114-117, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201308032.htm

    XI Guojun, HONG Xing, SHAO Hongqi. Application of improved logistic function model to prediction of surface subsidence[J]. Coal Science and Technology, 2013, 41(8): 114-117, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201308032.htm
  • Related Articles

    [1]Research on nonlinear constitutive model of interface considering cyclic softening[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240868
    [2]Analysis of mesoscopic damage evolution in freeze-thawed sandstone under dynamic disturbance[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241270
    [3]Study on elastoplastic constitutive model of granular materials considering meso-particle damage[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240110
    [4]XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
    [5]FU Yan, WANG Zi-juan, LIU Xin-rong, YUAN Wen, MIAO Lu-li, LIU Jun, DUN Zhi-yun. Meso damage evolution characteristics and macro degradation of sandstone under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1653-1661. DOI: 10.11779/CJGE201709013
    [6]CAO Wen-gui, ZHANG Chao, HE Min, LIU Tao. Statistical damage simulation method of strain softening deformation process for rocks considering characteristics of void compaction stage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1754-1761. DOI: 10.11779/CJGE201610002
    [7]ZHU Jing-jing, LI Xi-bing, GONG Feng-qiang, WANG Shi-ming. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531-539.
    [8]LIANG Zhengzhao, YANG Tianhong, TANG Chunan, ZHANG Juanxia, TANG Shibin, YU Qinglei. Three-dimensional damage soften model for failure process of heterogeneous rocks and associated numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1447-1452.
    [9]GE Xiurun, REN Jianxi, PU Yibin, MA Wei, ZHU Yuanlin. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 191-195.
    [10]Li Guangping, Tao Zhenye. A Micromechanical Damage Model for Rocks Subjected to True Triaxial Stresses[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(1): 24-31.

Catalog

    Article views (303) PDF downloads (79) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return