• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHI Li-jing, SONG Jian, DANG Peng-fei, LIU Jia-xuan. Modeling sub-surface velocity structures of regional sites[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 360-367. DOI: 10.11779/CJGE202202018
Citation: SHI Li-jing, SONG Jian, DANG Peng-fei, LIU Jia-xuan. Modeling sub-surface velocity structures of regional sites[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 360-367. DOI: 10.11779/CJGE202202018

Modeling sub-surface velocity structures of regional sites

More Information
  • Received Date: January 08, 2021
  • Available Online: September 22, 2022
  • The sub-surface shear wave velocity structure of regional sites provides an important basis for the comprehensive consideration of the site seismic effects in the fine simulation of urban ground motion fields and seismic damages of building groups. In this study, a method is proposed to establish the complex staggered sedimentary structure of regional sites. First, the boundary of the staggered soils is confined based on the available information of engineering geology, then the spatial probability distribution of interlaced soils is solved by the sequential indicator simulation method, and then the velocity structure is modeled based on the spatial correlation between shear wave velocity and engineering geological structure quantified by the sequential Gaussian simulation method. Accordingly, the three-dimensional (3D) velocity structure of Harbin urban site is modeled based on the borehole soil information and shear wave velocity data. The feasibility of this method is verified through the qualitative analysis of consistence with engineering geological sections and the quantitative comparison with velocity structures tested in boreholes and estimated by the experimental relation between velocity and depth. The results demonstrate that the 3D model makes a good spatial prediction of engineering geological structure and reflects well on the structure characteristics of regional sites. The shear wave velocity structure of the proposed model shows a good correlation with the engineering geological structure, and even the velocity decreases with the increasing depth. Furthermore, in seismic response analysis, the proposed model is far more conducive to specifying the nonlinear dynamic parameters according to the detailed rock and soil types.
  • [1]
    孙柏涛. 城市震害三维模拟系统的实现方法[J]. 地震工程与工程振动, 2010, 30(5): 1–8. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201005001.htm

    SUN Bai-tao. The implementation of three-dimensional seismic damage simulation system[J]. Journal of Earthquake Engineering and Engineering Vibration, 2010, 30(5): 1–8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201005001.htm
    [2]
    许镇, 陆新征, 韩博, 等. 城市区域建筑震害高真实度模拟[J]. 土木工程学报, 2014, 47(7): 46–52. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201407009.htm

    XU Zhen, LU Xin-zheng, HAN Bo, et al. Realistic simulation for seismic damages of buildings in an urban area[J]. China Civil Engineering Journal, 2014, 47(7): 46–52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201407009.htm
    [3]
    熊琛. 基于时程分析和三维场景可视化的区域建筑震害模拟研究[D]. 北京: 清华大学, 2016.

    XIONG Chen. Study on the Regional Building Seismic Damage Simulation Based on Time-history Analysis and 3D Scene Visualiztion[D]. Beijing: Tsinghua University. 2016. (in Chinese)
    [4]
    刘启方, 于彦彦, 章旭斌. 施甸盆地三维地震动研究[J]. 地震工程与工程振动, 2013, 33(4): 54–60. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201304007.htm

    LIU Qi-fang, YU Yan-yan, ZHANG Xu-bin. Three-dimensional ground motion simulation for Shidian Basin[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(4): 54–60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201304007.htm
    [5]
    陈少林, 张娇, 郭琪超, 等. 非水平成层场地上核电结构时域土–结相互作用分析[J]. 岩土工程学报, 2020, 42(2): 308–316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002017.htm

    CHEN Shao-lin, ZHANG Jiao, GUO Qi-chao, et al. Time-domain soil-structure interaction analysis of nuclear facilities on non-horizontal layered site[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 308–316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002017.htm
    [6]
    梁建文, 吴孟桃, 巴振宁. 软硬交互横向不均匀场地地震反应分析[J]. 岩土工程学报, 2019, 41(9): 1599–1608. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909004.htm

    LIANG Jian-wen, WU Meng-tao, BA Zhen-ning. Seismic response analysis of lateral uneven sites with soft-hard connected media[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1599–1608. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909004.htm
    [7]
    景立平, 卓旭炀, 王祥建. 复杂介质对地震波传播的影响[J]. 岩土工程学报, 2005, 27(4): 393–397. doi: 10.3321/j.issn:1000-4548.2005.04.006

    JING Li-ping, ZHUO Xu-yang, WANG Xiang-jian. The effect of complex media on seismic wave propagation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 393–397. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.04.006
    [8]
    GUO J T, WANG X L, WANG J M, et al. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm[J]. Engineering Geology, 2021, 284: 106047. doi: 10.1016/j.enggeo.2021.106047
    [9]
    KENT D V, OLSEN P E. Magnetic polarity stratigraphy and paleolatitude of the Triassic-Jurassic Blomidon Formation in the Fundy basin (Canada): implications for early Mesozoic tropical climate gradients[J]. Earth and Planetary Science Letters, 2000, 179(2): 311–324. doi: 10.1016/S0012-821X(00)00117-5
    [10]
    赵伯明. 广州地区三维地下速度结构模型建立及优化研究[J]. 华南地震, 2008, 28(4): 45–52. doi: 10.3969/j.issn.1001-8662.2008.04.006

    ZHAO Bo-ming. Modeling of 3D underground velocity structure in Guangzhou[J]. South China Journal of Seismology, 2008, 28(4): 45–52. (in Chinese) doi: 10.3969/j.issn.1001-8662.2008.04.006
    [11]
    刘启方, 李雪强. 唐山大地震近场宽频带地震动模拟[J]. 地震工程与工程振动, 2011, 31(5): 1–7. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201105002.htm

    LIU Qi-fang, LI Xue-qiang. Broad-band strong motion simulation of the great Tangshan earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(5): 1–7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201105002.htm
    [12]
    张振, 陈学良, 高孟潭, 等. 玉溪盆地三维速度结构建模[J]. 地震学报, 2017, 39(6): 930–940, 976. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201706011.htm

    ZHANG Zhen, CHEN Xue-liang, GAO Meng-tan, et al. 3-D modeling of velocity structure for the Yuxi basin[J]. Acta Seismologica Sinica, 2017, 39(6): 930–940, 976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201706011.htm
    [13]
    CHEN G X, ZHU J, QIANG M Y, et al. Three-dimensional site characterization with borehole data: a case study of Suzhou area[J]. Engineering Geology, 2018, 234: 65–82. doi: 10.1016/j.enggeo.2017.12.019
    [14]
    师黎静. 基于地脉动的近地表三维速度结构探测和建模成像[D]. 哈尔滨: 中国地震局工程力学研究所, 2007.

    (SHI Li-jing. Exploration and Imaging of 3D Subsurface Velocity Structure by Microtremors[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2007. (in Chinese
    [15]
    师黎静, 苏茜, 刘宇实, 等. 厦门本岛近地表三维速度结构建模研究[J]. 振动与冲击, 2016, 35(16): 43–48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201616008.htm

    SHI Li-jing, SU Xi, LIU Yu-shi, et al. A study on imaging the near-surface 3D wave velocities structure in the Xiamen Island[J]. Journal of Vibration and Shock, 2016, 35(16): 43–48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201616008.htm
    [16]
    DESBARATS A. Stochastic modeling and geostatistics: Principles, methods and case studies AAPG computer applications in geology No3[J]. Computers & Geosciences, 1996, 22(8): 951–952.
    [17]
    DEUTSCHC V, JOURNELA G. GSLIB: Geostatistical Software Library and User's Guide[M]. New York: Oxford University Press, 1992.
    [18]
    马秋石, 陈建国, 张波, 等. 序贯高斯模拟在西藏尼木岗讲矿区的应用研究[J]. 地质学刊, 2013, 37(3): 482–488. doi: 10.3969/j.issn.1674-3636.2013.03.482

    MA Qiu-shi, CHEN Jian-guo, ZHANG Bo, et al. Application study on sequential gauss simulation in Gangjiang Copper-polymetallic Mine in Nimu County of Tibet[J]. Journal of Geology, 2013, 37(3): 482–488. (in Chinese) doi: 10.3969/j.issn.1674-3636.2013.03.482
    [19]
    刘占宁, 宋宇辰, 孟海东, 等. 序贯高斯模拟在矿石品位估计中的应用研究[J]. 地质找矿论丛, 2018, 33(1): 149–155. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201801021.htm

    LIU Zhan-ning, SONG Yu-chen, MENG Hai-dong, et al. Application of sequential Gaussian simulation in ore grade estimation[J]. Contributions to Geology and Mineral Resources Research, 2018, 33(1): 149–155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201801021.htm
    [20]
    乐友喜, 曾勉, 问雪, 等. 利用序贯高斯随机模拟分析构造图的不确定性[J]. 石油地球物理勘探, 2017, 52(2): 333–339, 196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702018.htm

    YUE You-xi, ZENG Mian, WEN Xue, et al. Structure uncertainty analysis based on sequential Gaussian stochastic simulation[J]. Oil Geophysical Prospecting, 2017, 52(2): 333–339, 196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702018.htm
    [21]
    李迪, 胡乃联, 李国清, 等. 基于序贯高斯模拟的储量估算分层更新技术[J]. 中国矿业, 2014, 23(3): 130–135. doi: 10.3969/j.issn.1004-4051.2014.03.033

    LI Di, HU Nai-lian, LI Guo-qing, et al. Reserves estimation on hierarchical update technique based on the Sequential Gaussian Simulation[J]. China Mining Magazine, 2014, 23(3): 130–135. (in Chinese) doi: 10.3969/j.issn.1004-4051.2014.03.033
    [22]
    宋健, 师黎静, 党鹏飞, 等. 哈尔滨市剪切波速与埋深相关性分析[J]. 建筑结构, 2020, 50(增刊1): 1088–1092. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2020S1212.htm

    SONG Jian, SHI Li-jing, DANG Peng-fei, et al. Correlation analysis of shear wave velocity and depth in Harbin[J]. Building Structure, 2020, 50(S1): 1088–1092. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2020S1212.htm
  • Cited by

    Periodical cited type(12)

    1. 张永富,牛亚强,侯路正,王旭,夏琼. 胶结黄土力学特性的冻融劣化效应及本构模拟. 兰州交通大学学报. 2025(02): 128-135 .
    2. 李伟,李元勋,李辉,董勤喜,向田. 季冻黄土地区框锚边坡预应力锚杆内力计算方法. 土木与环境工程学报(中英文). 2024(04): 75-81 .
    3. 包卫星,吴倩,吴谦,秦川,侯天琪. 冻融循环作用下伊犁盐渍化黄土力学特性. 岩石力学与工程学报. 2024(07): 1775-1787 .
    4. 邱恩喜,潘宏宇,何巧玲,孙希望,万旭升,张蕊,王知深. 冻融条件下冰碛土力学特性试验及模型研究. 工程地质学报. 2024(03): 772-784 .
    5. 高英,马艳霞,杨丰华,李华. 季节冻土区黄土湿陷变形及微观机理. 科学技术与工程. 2024(34): 14778-14786 .
    6. 孙杰龙,王弘起,李盛斌,李大卫,邱明明. 冻融作用下高填方黄土抗剪强度劣化特性分析. 岩土工程技术. 2023(05): 609-613 .
    7. 郑方,邵生俊,王松鹤,刘乃飞,王永鑫. 冻融循环对黄土剪切屈服与破坏行为的影响. 西安建筑科技大学学报(自然科学版). 2023(05): 669-676 .
    8. 卢智,谢波,宋飞,邓军涛. 冻融循环作用下砂质黄土强度劣化特性及影响因素研究. 河北工程大学学报(自然科学版). 2023(04): 106-112 .
    9. 包卫星,李伟,毛雪松,陈锐,秦川,刘亚伦. 冻融循环条件下盐渍化风积沙力学特性. 交通运输工程学报. 2023(06): 114-124 .
    10. 孙明瑞,徐敏普,杨维伶. 冻融作用下黄土的抗剪特性研究进展. 山西建筑. 2022(05): 66-68+72 .
    11. 周志,李海鹏,王建伟,康庆平,张洋,李智涵,杨念. 有载冻融作用对深部重塑黏土抗剪强度影响的试验研究. 冰川冻土. 2022(02): 583-590 .
    12. 王博,黄睿,黄雪峰,邱明明,王寒. 延安新区黄土结构性参数对无侧限抗压强度的影响规律. 水资源与水工程学报. 2022(03): 202-208 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return