• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Yonggui, LIU Cong, MA Jing, SUN Zhao, YE Weimin, WANG Qiong. Swelling characteristics of compacted GMZ bentonite with saline-alkali evolution solutions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 690-698. DOI: 10.11779/CJGE20220134
Citation: CHEN Yonggui, LIU Cong, MA Jing, SUN Zhao, YE Weimin, WANG Qiong. Swelling characteristics of compacted GMZ bentonite with saline-alkali evolution solutions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 690-698. DOI: 10.11779/CJGE20220134

Swelling characteristics of compacted GMZ bentonite with saline-alkali evolution solutions

More Information
  • Received Date: January 29, 2022
  • Available Online: April 16, 2023
  • In the high-level radioactive waste repository, the concrete materials will decay into high-alkaline cement water under the long-term effects of groundwater and decay heat coupling, which then will affect the swelling characteristics of the compacted bentonite and may endanger the operation safety of the repository. According to the groundwater characteristics of the Beishan pre-selected disposal site in China, the Beishan site water (BSW), young cement water (YCW) and evolved cement water (ECW) are artificially prepared, respectively. At the same time, one-dimension swelling deformation tests are conducted on the compacted GMZ bentonite, the first choice of buffer/backfill materials for the repositories in China, with the infiltration of BSW, YCW and ECW. The evolution of swelling deformation characteristics of the compacted GMZ bentonite is analyzed considering the initial dry densities (1.50, 1.60, 1.70, 1.80 g/cm3) and the vertical stresses (0.1, 0.2, 0.4 MPa). The results show that with the infiltration of BSW, YCW and ECW solutions, the swelling deformation of the compacted GMZ bentonite continuously increases, but the rate of increase tapers off. The swelling deformation increases with the dry densities but decreases with the vertical stresses. On the basis of the micropores test results, the micro-mechanism of continuous swelling of the compacted bentonite samples caused by the infiltration of BSW, YCW and ECW solutions is analyzed. The results may provide a reference to the choice of buffer/backfill materials and the design for engineering barrier in the repositories in China.
  • [1]
    王建强, 戴志敏, 徐洪杰. 核能综合利用研究现状与展望[J]. 中国科学院院刊, 2019, 34(4): 460-468. doi: 10.16418/j.issn.1000-3045.2019.04.011

    WANG Jianqiang, DAI Zhimin, XU Hongjie. Research status and prospect of comprehensive utilization of nuclear energy[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 460-468. (in Chinese) doi: 10.16418/j.issn.1000-3045.2019.04.011
    [2]

    This page contains the following errors:

    error on line 1 at column 145: Namespace prefix xlink for href on ext-link is not defined

    Below is a rendering of the page up to the first error.

    国家原子能机构. IAEA公布2019年全球核电发展数据[Z].

    This page contains the following errors:

    error on line 1 at column 208: Namespace prefix xlink for href on ext-link is not defined

    Below is a rendering of the page up to the first error.

    China Atomic Energy Authority. IAEA publishes global nuclear power development data of 2019[Z].
    [3]

    This page contains the following errors:

    error on line 1 at column 129: Namespace prefix xlink for href on ext-link is not defined

    Below is a rendering of the page up to the first error.

    中国核能行业协会. 中国核能年度发展与展望(2020)[Z].

    This page contains the following errors:

    error on line 1 at column 201: Namespace prefix xlink for href on ext-link is not defined

    Below is a rendering of the page up to the first error.

    China Nuclear Energy Association. Annual development and outlook for nuclear energy in China (2020)[Z].
    [4]
    王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. doi: 10.3321/j.issn:1000-6915.2006.04.015

    WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015
    [5]
    PUSCH R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology, 1979, 45(2): 153-157. doi: 10.13182/NT79-A32305
    [6]
    KARNLAND O, OLSSON S, NILSSON U, et al. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions[J]. Physics and Chemistry Earth, Parts A/B/C, 2007, 32(1/2/3/4/5/6/7): 275-286.
    [7]
    VILLAR M V, IGLESIAS R J, GARCÍA-SIÑERIZ J L. State of the in situ Febex test (GTS, Switzerland) after 18 years: a heterogeneous bentonite barrier[J]. Environmental Geotechnics, 2020, 7(2): 147-159. doi: 10.1680/jenge.17.00093
    [8]
    LEHIKOINEN J, CARLSSON T, MUURINEN A. Evaluation of factors affecting diffusion in compacted bentonite[C]// Materials Research Society Proceedings. Pittsburgh: Materials Research Society, 1996: 675-682.
    [9]
    FERNÁNDEZ R, CUEVAS J, SÁNCHEZ L, et al. Reactivity of the cement-bentonite interface with alkaline solutions using transport cells[J]. Applied Geochemistry, 2006, 21(6): 977-992. doi: 10.1016/j.apgeochem.2006.02.016
    [10]
    NAKAYAMA S, SAKAMOTO Y, YAMAGUCHI T, et al. Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions[J]. Applied Clay Science, 2004, 27(1/2): 53-65.
    [11]
    CASTELLANOS E, VILLAR M V, ROMERO E, et al. Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33: S516-S526. doi: 10.1016/j.pce.2008.10.056
    [12]
    SATO T, KURODA M, YOKOYAMA S, et al. Dissolution mechanism and kinetics of smectite under alkaline conditions[C]// Proceedings of International Workshop on Bentonite-Cement Interaction in Repository Environments, Tokyo, 2004.
    [13]
    HE Y, YE W M, CHEN Y G, et al. Effects of K+ solutions on swelling behavior of compacted GMZ bentonite[J]. Engineering Geology, 2019, 249: 241-248. doi: 10.1016/j.enggeo.2018.12.020
    [14]
    项国圣, 徐永福, 王毅, 等. 碱溶液侵蚀下高庙子膨润土膨胀变形的变化规律[J]. 上海交通大学学报, 2018, 52(2): 141-146. doi: 10.16183/j.cnki.jsjtu.2018.02.003

    XIANG Guosheng, XU Yongfu, WANG Yi, et al. Change law of the swelling deformation of GMZ bentonite corroded by alkaline pore water[J]. Journal of Shanghai Jiao Tong University, 2018, 52(2): 141-146. (in Chinese) doi: 10.16183/j.cnki.jsjtu.2018.02.003
    [15]
    LIU L N, CHEN Y G, YE W M, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH- anions[J]. Applied Clay Science, 2018, 161: 334-342. doi: 10.1016/j.clay.2018.04.023
    [16]
    贺勇. 高压实GMZ膨润土化-水-力耦合体变性能研究[D]. 上海: 同济大学, 2017.

    HE Yong. Volume Change Behavior of Highly Compacted GMZ Bentonite Under Chemo-Hydro-Mechanical Conditions[D]. Shanghai: Tongji University, 2017. (in Chinese)
    [17]
    WERSIN P, JOHNSON L H, MCKINLEY I G. Performance of the bentonite barrier at temperatures beyond 100℃: a critical review[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8/9/10/11/12/13/14): 780-788.
    [18]
    KARNLAND O, BIRGERSSON M. Montmorillonite Stability with Special Respect to KBS-3 Conditions[R]. Sweden, 2006.
    [19]
    WATSON C, HANE K, SAVAGE D, et al. Reaction and diffusion of cementitious water in bentonite: Results of 'blind' modelling[J]. Applied Clay Science, 2009, 45(1/2): 54-69.
    [20]
    SUN Z, CHEN Y G, YE W M, et al. Swelling deformation of Gaomiaozi bentonite under alkaline chemical conditions in a repository[J]. Engineering Geology, 2020, 279: 105891. doi: 10.1016/j.enggeo.2020.105891
    [21]
    郭永海, 杨天笑, 刘淑芬. 高放废物处置库甘肃北山预选区水文地质特征研究[J]. 铀矿地质, 2001, 17(3): 184-189. doi: 10.3969/j.issn.1000-0658.2001.03.010

    GUO Yonghai, YANG Tianxiao, LIU Shufen. Hydrogeological characteristics of Beishan preselected area, Gansu Province for China's high-level radioactive waste repository[J]. Uranium Geology, 2001, 17(3): 184-189. (in Chinese) doi: 10.3969/j.issn.1000-0658.2001.03.010
    [22]
    BERNER U R. Evolution of pore water chemistry during degradation of cement in a radioactive waste repository environment[J]. Waste Management, 1992, 12(2/3): 201-219.
    [23]
    SUN Z, CHEN Y G, CUI Y J, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: the Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66-74. doi: 10.1016/j.enggeo.2018.08.002
    [24]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [25]
    CHEN Y G, DONG X X, ZHANG X D, et al. Oedometric compression and thermal volume behavior of compacted Gaomiaozi bentonite saturated with salt solution[J]. Geomechanics for Energy and the Environment, 2021, 25: 100186. doi: 10.1016/j.gete.2020.100186
    [26]
    CHEN Y G, ZHU C M, YE W M, et al. Effects of solution concentration and vertical stress on the swelling behavior of compacted GMZ01 bentonite[J]. Applied Clay Science, 2016, 124/125: 11-20. doi: 10.1016/j.clay.2016.01.050
    [27]
    RAO S M, THYAGARAJ T. Role of direction of salt migration on the swelling behaviour of compacted clays[J]. Applied Clay Science, 2007, 38(1/2): 113-129.
    [28]
    SRIDHARAN A, GURTUG Y. Swelling behaviour of compacted fine-grained soils[J]. Engineering Geology, 2004, 72(1/2): 9-18.
    [29]
    KOMINE H, OGATA N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31(4): 478-490. doi: 10.1139/t94-057
    [30]
    LEE J O, LIM J G, KANG I M, et al. Swelling pressures of compacted Ca-bentonite[J]. Engineering Geology, 2012, 129/130: 20-26. doi: 10.1016/j.enggeo.2012.01.005
    [31]
    BOLES J R, FRANKS S G. Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Petrology, 1979, 49(1): 55-70.
    [32]
    SCHANZ T, TRIPATHY S. Swelling pressure of a divalent-rich bentonite: diffuse double-layer theory revisited[J]. Water Resources Research, 2009, 45(5): W00C12.
    [33]
    董欣欣. 高压实高庙子膨润土及其组合体界面的水力-力学性质研究[D]. 上海: 同济大学, 2020.

    DONG Xin-xin. Hydraulic and Mechanical Properties of Densely Compacted GMZ Bentonite and Its Assembled Interface[D]. Shanghai: Tongji University, 2020. (in Chinese)
    [34]
    BIRLE E, HEYER D, VOGT N. Influence of the initial water content and dry density on the soil-water retention curve and the shrinkage behavior of a compacted clay[J]. Acta Geotechnica, 2008, 3(3): 191-200. doi: 10.1007/s11440-008-0059-y
    [35]
    刘丽娜. 热-高碱作用下压实膨润土膨胀力劣化及结构性损伤研究[D]. 上海: 同济大学, 2020.

    LIU Lina. Swelling Pressure Deterioration of Compacted Bentonite and its Structural Damage Induced by Heat Combined with Hyperalkaline Conditions[D]. Shanghai: Tongji University, 2020. (in Chinese)
    [36]
    CHEN B, GUO J X, ZHANG H X. Alteration of compacted GMZ bentonite by infiltration of alkaline solution[J]. Clay Minerals, 2016, 51(2): 237-247. doi: 10.1180/claymin.2016.051.2.10
    [37]
    SUZUKI S, PRAYONGPHAN S, ICHIKAWA Y, et al. In situ observations of the swelling of bentonite aggregates in NaCl solution[J]. Applied Clay Science, 2005, 29(2): 89-98. doi: 10.1016/j.clay.2004.11.001
    [38]
    苏薇. 考虑膜效应的GMZ膨润土及其混合物水-化屏障性能研究[D]. 上海: 同济大学, 2018.

    SU Wei. Study on the hydro-Chemical Performances of GMZ Bentonite Based Materials with Consideration of Membrane Effects[D]. Shanghai: Tongji University, 2018. (in Chinese)
  • Related Articles

    [1]ZENG Kai-hua, LI Xue-jun, LU Shou-shan, LI Han-long. Unified plastic solutions to a circular tunnel under two-way unequal pressures and their applications[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1772-1779. DOI: 10.11779/CJGE202210002
    [2]LI Hang-zhou, XIONG Guang-dong, GUO Tong, LIAO Hong-jian, PU Ming, Han Bo. Binary-medium model for loess considering unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 53-57. DOI: 10.11779/CJGE2021S1010
    [3]ZHANG Chang-guang, GAO Ben-xian, SHAN Ye-peng, LI Zong-hui. Unified plastic solution for stress and displacement of tunnels in cold regions considering transversely isotropic frost heave[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1825-1831. DOI: 10.11779/CJGE202010007
    [4]GAO Jiang-ping, LIU Wen-zhi, YANG Ji-qiang. Formulas for bearing capacity of soft soil foundations with hard crust based on three-shear stress unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2331-2337. DOI: 10.11779/CJGE201912019
    [5]ZHANG Chang-guang, ZHAO Jun-hai, ZHANG Qing-he. Convergence - confinement analysis of deep circular rock tunnels based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 110-114.
    [6]Unified solution of shear strength for unsaturated soil under plane strain condition and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [7]Elastic-plastic unified solutions for stresses and displacements of deep buried circular hydraulic tunnel[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1738-1745.
    [8]FAN Wen, SHENG Zhujiang, YU Maohong. Upper-bound limit analysis of earth pressure based on unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1147-1153.
    [9]XIE Qundan, HE Jie, LIU Jie, OUYANG Jianxiang. Unified twin shear strength theory for calculation of earth pressure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 343-345.
    [10]Yu Maohong. Unified Strength Theory for Geomaterials and lts Applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10.
  • Cited by

    Periodical cited type(6)

    1. 张军辉,张安顺,彭俊辉,胡惠仁. 循环荷载下路基黏土永久变形特性及力学模型. 中国公路学报. 2024(06): 34-45 .
    2. 任戈,刘俊芳,刘鸿飞,白瑞刚,Ihsan Ullal. 基于Eshelby夹杂理论高温冻土累积塑性应变修正模型. 内蒙古工业大学学报(自然科学版). 2024(04): 368-372 .
    3. 张斌龙,刘强,王大雁,张吾渝,周志伟,郭文瑾. 主应力轴旋转条件下初始应力状态对冻结黏土动力特性的影响试验研究. 冰川冻土. 2024(05): 1603-1611 .
    4. 李月,江欣. 钻井液旋转粘度测试中双圆筒力矩分析. 钻探工程. 2024(S1): 96-103 .
    5. 孙凯,李志清,孔佑兴,周应新,王双娇. 单轴循环荷载下冻结土石混合体动弹性模量和累积塑性应变研究. 冰川冻土. 2023(06): 1730-1743 .
    6. 王亚鹏,李国玉,陈敦,马巍,张轩. 复杂循环应力路径下冻结粉质黏土的变形特性与安定性行为研究. 岩土工程学报. 2023(S2): 134-139 . 本站查看

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return